Emerging and Established Technologies to Increase Nitrogen Use Efficiency of Cereals

Nitrogen (N) fertilizers are one of the most expensive inputs in agricultural settings. Additionally, the loss of N increases costs, contributes to soil acidification, and causes off-site pollution of the air, groundwater and waterways. This study reviews current knowledge about technologies for N f...

Full description

Bibliographic Details
Main Authors: Juan M. Herrera, Gerardo Rubio, Lilia Levy Häner, Jorge A. Delgado, Carlos A. Lucho-Constantino, Samira Islas-Valdez, Didier Pellet
Format: Article
Language:English
Published: MDPI AG 2016-04-01
Series:Agronomy
Subjects:
Online Access:http://www.mdpi.com/2073-4395/6/2/25
Description
Summary:Nitrogen (N) fertilizers are one of the most expensive inputs in agricultural settings. Additionally, the loss of N increases costs, contributes to soil acidification, and causes off-site pollution of the air, groundwater and waterways. This study reviews current knowledge about technologies for N fertilization with potential to increase N use efficiency and reduce its negative effects on the environment. Classic inorganic sources such as urea and ammonium sulfate are the major sources utilized, while controlled N release fertilizers have not been significantly adopted for cereals and oil crops. Microorganisms, with the exception of Rhizobium sp. in soybeans, are also not widely used nowadays (e.g., plant growth-promoting bacteria and cynobacteria). The interest in implementing new N fertilization knowledge is stimulating the development of sensors to diagnose the N status and decision support systems for integrating several variables to optimize sources, rates and methods of application. Among potential new technologies we identified the incipient development of nanofertilizers, nutrient formulations to coat seeds, and recycled nutrients. Furthermore, increasing concern about the environmental consequences of N may facilitate the implementation of innovations outside the farm such as more effective regulations to guide N fertilization and methods to manufacture N fertilizers that are more energy-efficient and less CO2 equivalent emitting.
ISSN:2073-4395