Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks
In recent years, the classification of breast cancer has been the topic of interest in the field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women. Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2018-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8353225/ |
id |
doaj-14a8eaa5aa5e4426932c11103ee162d6 |
---|---|
record_format |
Article |
spelling |
doaj-14a8eaa5aa5e4426932c11103ee162d62021-03-29T20:53:04ZengIEEEIEEE Access2169-35362018-01-016246802469310.1109/ACCESS.2018.28312808353225Classification of Breast Cancer Based on Histology Images Using Convolutional Neural NetworksDalal Bardou0https://orcid.org/0000-0002-9169-863XKun Zhang1Sayed Mohammad Ahmad2School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, ChinaSchool of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, ChinaLareb Technologies, New Delhi, IndiaIn recent years, the classification of breast cancer has been the topic of interest in the field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women. Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The diagnosis is based on the qualification of the histopathologist, who will look for abnormal cells. However, if the histopathologist is not well-trained, this may lead to wrong diagnosis. With the recent advances in image processing and machine learning, there is an interest in attempting to develop a reliable pattern recognition based systems to improve the quality of diagnosis. In this paper, we compare two machine learning approaches for the automatic classification of breast cancer histology images into benign and malignant and into benign and malignant sub-classes. The first approach is based on the extraction of a set of handcrafted features encoded by two coding models (bag of words and locality constrained linear coding) and trained by support vector machines, while the second approach is based on the design of convolutional neural networks. We have also experimentally tested dataset augmentation techniques to enhance the accuracy of the convolutional neural network as well as “handcrafted features + convolutional neural network”and “convolutional neural network features + classifier”configurations. The results show convolutional neural networks outperformed the handcrafted feature based classifier, where we achieved accuracy between 96.15% and 98.33% for the binary classification and 83.31% and 88.23% for the multi-class classification.https://ieeexplore.ieee.org/document/8353225/Histology imagesconvolutional neural networksengineered featuresbag of wordslocality constrained linear coding |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dalal Bardou Kun Zhang Sayed Mohammad Ahmad |
spellingShingle |
Dalal Bardou Kun Zhang Sayed Mohammad Ahmad Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks IEEE Access Histology images convolutional neural networks engineered features bag of words locality constrained linear coding |
author_facet |
Dalal Bardou Kun Zhang Sayed Mohammad Ahmad |
author_sort |
Dalal Bardou |
title |
Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks |
title_short |
Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks |
title_full |
Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks |
title_fullStr |
Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks |
title_full_unstemmed |
Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks |
title_sort |
classification of breast cancer based on histology images using convolutional neural networks |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2018-01-01 |
description |
In recent years, the classification of breast cancer has been the topic of interest in the field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women. Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The diagnosis is based on the qualification of the histopathologist, who will look for abnormal cells. However, if the histopathologist is not well-trained, this may lead to wrong diagnosis. With the recent advances in image processing and machine learning, there is an interest in attempting to develop a reliable pattern recognition based systems to improve the quality of diagnosis. In this paper, we compare two machine learning approaches for the automatic classification of breast cancer histology images into benign and malignant and into benign and malignant sub-classes. The first approach is based on the extraction of a set of handcrafted features encoded by two coding models (bag of words and locality constrained linear coding) and trained by support vector machines, while the second approach is based on the design of convolutional neural networks. We have also experimentally tested dataset augmentation techniques to enhance the accuracy of the convolutional neural network as well as “handcrafted features + convolutional neural network”and “convolutional neural network features + classifier”configurations. The results show convolutional neural networks outperformed the handcrafted feature based classifier, where we achieved accuracy between 96.15% and 98.33% for the binary classification and 83.31% and 88.23% for the multi-class classification. |
topic |
Histology images convolutional neural networks engineered features bag of words locality constrained linear coding |
url |
https://ieeexplore.ieee.org/document/8353225/ |
work_keys_str_mv |
AT dalalbardou classificationofbreastcancerbasedonhistologyimagesusingconvolutionalneuralnetworks AT kunzhang classificationofbreastcancerbasedonhistologyimagesusingconvolutionalneuralnetworks AT sayedmohammadahmad classificationofbreastcancerbasedonhistologyimagesusingconvolutionalneuralnetworks |
_version_ |
1724193907006242816 |