Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sen...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Genes |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4425/12/8/1195 |
id |
doaj-14a698177dd243b280ab5c399e10c30b |
---|---|
record_format |
Article |
spelling |
doaj-14a698177dd243b280ab5c399e10c30b2021-08-26T13:46:53ZengMDPI AGGenes2073-44252021-07-01121195119510.3390/genes12081195Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin RemodelingLamis Saad0Andries Kalsbeek1Jean Zwiller2Patrick Anglard3Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, FranceThe Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The NetherlandsLaboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, FranceLaboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, FranceThe circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (<i>Dnmts</i>, <i>Tets</i>), circadian rhythms (<i>Clock</i>, <i>Bmal1</i>, <i>Per1/2</i>, <i>Cry1/2</i>, <i>Rev-Erbβ</i>, <i>Dbp1)</i>, appetite, and satiety (<i>Orexin</i>, <i>Npy</i>) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.https://www.mdpi.com/2073-4425/12/8/1195cocainesucroseDNA methylationcircadian rhythmsappetite and satietyaddiction |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lamis Saad Andries Kalsbeek Jean Zwiller Patrick Anglard |
spellingShingle |
Lamis Saad Andries Kalsbeek Jean Zwiller Patrick Anglard Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling Genes cocaine sucrose DNA methylation circadian rhythms appetite and satiety addiction |
author_facet |
Lamis Saad Andries Kalsbeek Jean Zwiller Patrick Anglard |
author_sort |
Lamis Saad |
title |
Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling |
title_short |
Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling |
title_full |
Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling |
title_fullStr |
Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling |
title_full_unstemmed |
Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling |
title_sort |
rhythmic regulation of dna methylation factors and core-clock genes in brain structures activated by cocaine or sucrose: potential role of chromatin remodeling |
publisher |
MDPI AG |
series |
Genes |
issn |
2073-4425 |
publishDate |
2021-07-01 |
description |
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (<i>Dnmts</i>, <i>Tets</i>), circadian rhythms (<i>Clock</i>, <i>Bmal1</i>, <i>Per1/2</i>, <i>Cry1/2</i>, <i>Rev-Erbβ</i>, <i>Dbp1)</i>, appetite, and satiety (<i>Orexin</i>, <i>Npy</i>) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors. |
topic |
cocaine sucrose DNA methylation circadian rhythms appetite and satiety addiction |
url |
https://www.mdpi.com/2073-4425/12/8/1195 |
work_keys_str_mv |
AT lamissaad rhythmicregulationofdnamethylationfactorsandcoreclockgenesinbrainstructuresactivatedbycocaineorsucrosepotentialroleofchromatinremodeling AT andrieskalsbeek rhythmicregulationofdnamethylationfactorsandcoreclockgenesinbrainstructuresactivatedbycocaineorsucrosepotentialroleofchromatinremodeling AT jeanzwiller rhythmicregulationofdnamethylationfactorsandcoreclockgenesinbrainstructuresactivatedbycocaineorsucrosepotentialroleofchromatinremodeling AT patrickanglard rhythmicregulationofdnamethylationfactorsandcoreclockgenesinbrainstructuresactivatedbycocaineorsucrosepotentialroleofchromatinremodeling |
_version_ |
1721193114632192000 |