Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor Structure

In the context of multidimensional structures, with the presence of a common factor and multiple specific or group factors, estimates of reliability require specific estimators. The use of classical procedures such as the alpha coefficient or omega total that ignore structural complexity are not app...

Full description

Bibliographic Details
Main Authors: Italo Trizano-Hermosilla, José L. Gálvez-Nieto, Jesús M. Alvarado, José L. Saiz, Sonia Salvo-Garrido
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-06-01
Series:Frontiers in Psychology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpsyg.2021.508287/full
id doaj-149394d9e9cc49008d5d990ebe03bc59
record_format Article
spelling doaj-149394d9e9cc49008d5d990ebe03bc592021-06-24T04:23:02ZengFrontiers Media S.A.Frontiers in Psychology1664-10782021-06-011210.3389/fpsyg.2021.508287508287Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor StructureItalo Trizano-Hermosilla0José L. Gálvez-Nieto1Jesús M. Alvarado2José L. Saiz3Sonia Salvo-Garrido4Departamento de Psicología, Facultad de Educación, Ciencias Sociales y Humanidades, Universidad de La Frontera, Temuco, ChileDepartamento de Trabajo Social, Facultad de Educación, Ciencias Sociales y Humanidades, Universidad de La Frontera, Temuco, ChileDepartamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, SpainDepartamento de Psicología, Facultad de Educación, Ciencias Sociales y Humanidades, Universidad de La Frontera, Temuco, ChileDepartamento de Matemática y Estadística, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, ChileIn the context of multidimensional structures, with the presence of a common factor and multiple specific or group factors, estimates of reliability require specific estimators. The use of classical procedures such as the alpha coefficient or omega total that ignore structural complexity are not appropriate, since they can lead to strongly biased estimates. Through a simulation study, the bias of six estimators of reliability in multidimensional measures was evaluated and compared. The study is complemented by an empirical illustration that exemplifies the procedure. Results showed that the estimators with the lowest bias in the estimation of the total reliability parameter are omega total, the two versions of greatest lower bound (GLB) and the alpha coefficient, which in turn are also those that produce the highest overestimation of the reliability of the general factor. Nevertheless, the most appropriate estimators, in that they produce less biased estimates of the reliability parameter of the general factor, are omega limit and omega hierarchical.https://www.frontiersin.org/articles/10.3389/fpsyg.2021.508287/fullreliabilitymultidimensionalbifactorMonte – Carlo simulationmeasurement
collection DOAJ
language English
format Article
sources DOAJ
author Italo Trizano-Hermosilla
José L. Gálvez-Nieto
Jesús M. Alvarado
José L. Saiz
Sonia Salvo-Garrido
spellingShingle Italo Trizano-Hermosilla
José L. Gálvez-Nieto
Jesús M. Alvarado
José L. Saiz
Sonia Salvo-Garrido
Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor Structure
Frontiers in Psychology
reliability
multidimensional
bifactor
Monte – Carlo simulation
measurement
author_facet Italo Trizano-Hermosilla
José L. Gálvez-Nieto
Jesús M. Alvarado
José L. Saiz
Sonia Salvo-Garrido
author_sort Italo Trizano-Hermosilla
title Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor Structure
title_short Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor Structure
title_full Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor Structure
title_fullStr Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor Structure
title_full_unstemmed Reliability Estimation in Multidimensional Scales: Comparing the Bias of Six Estimators in Measures With a Bifactor Structure
title_sort reliability estimation in multidimensional scales: comparing the bias of six estimators in measures with a bifactor structure
publisher Frontiers Media S.A.
series Frontiers in Psychology
issn 1664-1078
publishDate 2021-06-01
description In the context of multidimensional structures, with the presence of a common factor and multiple specific or group factors, estimates of reliability require specific estimators. The use of classical procedures such as the alpha coefficient or omega total that ignore structural complexity are not appropriate, since they can lead to strongly biased estimates. Through a simulation study, the bias of six estimators of reliability in multidimensional measures was evaluated and compared. The study is complemented by an empirical illustration that exemplifies the procedure. Results showed that the estimators with the lowest bias in the estimation of the total reliability parameter are omega total, the two versions of greatest lower bound (GLB) and the alpha coefficient, which in turn are also those that produce the highest overestimation of the reliability of the general factor. Nevertheless, the most appropriate estimators, in that they produce less biased estimates of the reliability parameter of the general factor, are omega limit and omega hierarchical.
topic reliability
multidimensional
bifactor
Monte – Carlo simulation
measurement
url https://www.frontiersin.org/articles/10.3389/fpsyg.2021.508287/full
work_keys_str_mv AT italotrizanohermosilla reliabilityestimationinmultidimensionalscalescomparingthebiasofsixestimatorsinmeasureswithabifactorstructure
AT joselgalveznieto reliabilityestimationinmultidimensionalscalescomparingthebiasofsixestimatorsinmeasureswithabifactorstructure
AT jesusmalvarado reliabilityestimationinmultidimensionalscalescomparingthebiasofsixestimatorsinmeasureswithabifactorstructure
AT joselsaiz reliabilityestimationinmultidimensionalscalescomparingthebiasofsixestimatorsinmeasureswithabifactorstructure
AT soniasalvogarrido reliabilityestimationinmultidimensionalscalescomparingthebiasofsixestimatorsinmeasureswithabifactorstructure
_version_ 1721361765178015744