A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil
Geographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological a...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Instituto Oswaldo Cruz, Ministério da Saúde
2010-07-01
|
Series: | Memórias do Instituto Oswaldo Cruz. |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762010000400030 |
id |
doaj-1490347674094dea9f0f83edd5be76b0 |
---|---|
record_format |
Article |
spelling |
doaj-1490347674094dea9f0f83edd5be76b02020-11-24T23:12:12ZengInstituto Oswaldo Cruz, Ministério da SaúdeMemórias do Instituto Oswaldo Cruz.0074-02761678-80602010-07-01105452453110.1590/S0074-02762010000400030A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, BrazilRicardo José de Paula Souza GuimarãesCorina Costa FreitasLuciano Vieira DutraRonaldo Guilherme Carvalho ScholteFlávia Toledo Martins-BedéFernanda Rodrigues FonsecaRonaldo Santos AmaralSandra Costa DrummondCarlos Alberto FelgueirasGuilherme Corrêa OliveiraOmar Santos CarvalhoGeographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression model (R² = 0.39) was established, after a variable selection phase, with a set of spatial variables including the presence or absence of Biomphalaria glabrata, winter enhanced vegetation index, summer minimum temperature and percentage of houses with water coming from a spring or well. A regional model was also developed by splitting the state of Minas Gerais (MG) into four regions and establishing a linear regression model for each of the four regions: 1 (R² = 0.97), 2 (R² = 0.60), 3 (R² = 0.63) and 4 (R² = 0.76). Based on these models, a schistosomiasis risk map was built for MG. In this paper, geostatistics was also used to make inferences about the presence of Biomphalaria spp. The result was a map of species and risk areas. The obtained risk map permits the association of uncertainties, which can be used to qualify the inferences and it can be thought of as an auxiliary tool for public health strategies.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762010000400030schistosomiasisgeographical information systemgeostatistical proceduresBiomphalariamultiple linear regressionepidemiology |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ricardo José de Paula Souza Guimarães Corina Costa Freitas Luciano Vieira Dutra Ronaldo Guilherme Carvalho Scholte Flávia Toledo Martins-Bedé Fernanda Rodrigues Fonseca Ronaldo Santos Amaral Sandra Costa Drummond Carlos Alberto Felgueiras Guilherme Corrêa Oliveira Omar Santos Carvalho |
spellingShingle |
Ricardo José de Paula Souza Guimarães Corina Costa Freitas Luciano Vieira Dutra Ronaldo Guilherme Carvalho Scholte Flávia Toledo Martins-Bedé Fernanda Rodrigues Fonseca Ronaldo Santos Amaral Sandra Costa Drummond Carlos Alberto Felgueiras Guilherme Corrêa Oliveira Omar Santos Carvalho A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil Memórias do Instituto Oswaldo Cruz. schistosomiasis geographical information system geostatistical procedures Biomphalaria multiple linear regression epidemiology |
author_facet |
Ricardo José de Paula Souza Guimarães Corina Costa Freitas Luciano Vieira Dutra Ronaldo Guilherme Carvalho Scholte Flávia Toledo Martins-Bedé Fernanda Rodrigues Fonseca Ronaldo Santos Amaral Sandra Costa Drummond Carlos Alberto Felgueiras Guilherme Corrêa Oliveira Omar Santos Carvalho |
author_sort |
Ricardo José de Paula Souza Guimarães |
title |
A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil |
title_short |
A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil |
title_full |
A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil |
title_fullStr |
A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil |
title_full_unstemmed |
A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil |
title_sort |
geoprocessing approach for studying and controlling schistosomiasis in the state of minas gerais, brazil |
publisher |
Instituto Oswaldo Cruz, Ministério da Saúde |
series |
Memórias do Instituto Oswaldo Cruz. |
issn |
0074-0276 1678-8060 |
publishDate |
2010-07-01 |
description |
Geographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression model (R² = 0.39) was established, after a variable selection phase, with a set of spatial variables including the presence or absence of Biomphalaria glabrata, winter enhanced vegetation index, summer minimum temperature and percentage of houses with water coming from a spring or well. A regional model was also developed by splitting the state of Minas Gerais (MG) into four regions and establishing a linear regression model for each of the four regions: 1 (R² = 0.97), 2 (R² = 0.60), 3 (R² = 0.63) and 4 (R² = 0.76). Based on these models, a schistosomiasis risk map was built for MG. In this paper, geostatistics was also used to make inferences about the presence of Biomphalaria spp. The result was a map of species and risk areas. The obtained risk map permits the association of uncertainties, which can be used to qualify the inferences and it can be thought of as an auxiliary tool for public health strategies. |
topic |
schistosomiasis geographical information system geostatistical procedures Biomphalaria multiple linear regression epidemiology |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762010000400030 |
work_keys_str_mv |
AT ricardojosedepaulasouzaguimaraes ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT corinacostafreitas ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT lucianovieiradutra ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT ronaldoguilhermecarvalhoscholte ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT flaviatoledomartinsbede ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT fernandarodriguesfonseca ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT ronaldosantosamaral ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT sandracostadrummond ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT carlosalbertofelgueiras ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT guilhermecorreaoliveira ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT omarsantoscarvalho ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT ricardojosedepaulasouzaguimaraes geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT corinacostafreitas geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT lucianovieiradutra geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT ronaldoguilhermecarvalhoscholte geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT flaviatoledomartinsbede geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT fernandarodriguesfonseca geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT ronaldosantosamaral geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT sandracostadrummond geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT carlosalbertofelgueiras geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT guilhermecorreaoliveira geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil AT omarsantoscarvalho geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil |
_version_ |
1725601972179959808 |