A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil

Geographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological a...

Full description

Bibliographic Details
Main Authors: Ricardo José de Paula Souza Guimarães, Corina Costa Freitas, Luciano Vieira Dutra, Ronaldo Guilherme Carvalho Scholte, Flávia Toledo Martins-Bedé, Fernanda Rodrigues Fonseca, Ronaldo Santos Amaral, Sandra Costa Drummond, Carlos Alberto Felgueiras, Guilherme Corrêa Oliveira, Omar Santos Carvalho
Format: Article
Language:English
Published: Instituto Oswaldo Cruz, Ministério da Saúde 2010-07-01
Series:Memórias do Instituto Oswaldo Cruz.
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762010000400030
id doaj-1490347674094dea9f0f83edd5be76b0
record_format Article
spelling doaj-1490347674094dea9f0f83edd5be76b02020-11-24T23:12:12ZengInstituto Oswaldo Cruz, Ministério da SaúdeMemórias do Instituto Oswaldo Cruz.0074-02761678-80602010-07-01105452453110.1590/S0074-02762010000400030A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, BrazilRicardo José de Paula Souza GuimarãesCorina Costa FreitasLuciano Vieira DutraRonaldo Guilherme Carvalho ScholteFlávia Toledo Martins-BedéFernanda Rodrigues FonsecaRonaldo Santos AmaralSandra Costa DrummondCarlos Alberto FelgueirasGuilherme Corrêa OliveiraOmar Santos CarvalhoGeographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression model (R² = 0.39) was established, after a variable selection phase, with a set of spatial variables including the presence or absence of Biomphalaria glabrata, winter enhanced vegetation index, summer minimum temperature and percentage of houses with water coming from a spring or well. A regional model was also developed by splitting the state of Minas Gerais (MG) into four regions and establishing a linear regression model for each of the four regions: 1 (R² = 0.97), 2 (R² = 0.60), 3 (R² = 0.63) and 4 (R² = 0.76). Based on these models, a schistosomiasis risk map was built for MG. In this paper, geostatistics was also used to make inferences about the presence of Biomphalaria spp. The result was a map of species and risk areas. The obtained risk map permits the association of uncertainties, which can be used to qualify the inferences and it can be thought of as an auxiliary tool for public health strategies.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762010000400030schistosomiasisgeographical information systemgeostatistical proceduresBiomphalariamultiple linear regressionepidemiology
collection DOAJ
language English
format Article
sources DOAJ
author Ricardo José de Paula Souza Guimarães
Corina Costa Freitas
Luciano Vieira Dutra
Ronaldo Guilherme Carvalho Scholte
Flávia Toledo Martins-Bedé
Fernanda Rodrigues Fonseca
Ronaldo Santos Amaral
Sandra Costa Drummond
Carlos Alberto Felgueiras
Guilherme Corrêa Oliveira
Omar Santos Carvalho
spellingShingle Ricardo José de Paula Souza Guimarães
Corina Costa Freitas
Luciano Vieira Dutra
Ronaldo Guilherme Carvalho Scholte
Flávia Toledo Martins-Bedé
Fernanda Rodrigues Fonseca
Ronaldo Santos Amaral
Sandra Costa Drummond
Carlos Alberto Felgueiras
Guilherme Corrêa Oliveira
Omar Santos Carvalho
A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil
Memórias do Instituto Oswaldo Cruz.
schistosomiasis
geographical information system
geostatistical procedures
Biomphalaria
multiple linear regression
epidemiology
author_facet Ricardo José de Paula Souza Guimarães
Corina Costa Freitas
Luciano Vieira Dutra
Ronaldo Guilherme Carvalho Scholte
Flávia Toledo Martins-Bedé
Fernanda Rodrigues Fonseca
Ronaldo Santos Amaral
Sandra Costa Drummond
Carlos Alberto Felgueiras
Guilherme Corrêa Oliveira
Omar Santos Carvalho
author_sort Ricardo José de Paula Souza Guimarães
title A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil
title_short A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil
title_full A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil
title_fullStr A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil
title_full_unstemmed A geoprocessing approach for studying and controlling schistosomiasis in the state of Minas Gerais, Brazil
title_sort geoprocessing approach for studying and controlling schistosomiasis in the state of minas gerais, brazil
publisher Instituto Oswaldo Cruz, Ministério da Saúde
series Memórias do Instituto Oswaldo Cruz.
issn 0074-0276
1678-8060
publishDate 2010-07-01
description Geographical information systems (GIS) are tools that have been recently tested for improving our understanding of the spatial distribution of disease. The objective of this paper was to further develop the GIS technology to model and control schistosomiasis using environmental, social, biological and remote-sensing variables. A final regression model (R² = 0.39) was established, after a variable selection phase, with a set of spatial variables including the presence or absence of Biomphalaria glabrata, winter enhanced vegetation index, summer minimum temperature and percentage of houses with water coming from a spring or well. A regional model was also developed by splitting the state of Minas Gerais (MG) into four regions and establishing a linear regression model for each of the four regions: 1 (R² = 0.97), 2 (R² = 0.60), 3 (R² = 0.63) and 4 (R² = 0.76). Based on these models, a schistosomiasis risk map was built for MG. In this paper, geostatistics was also used to make inferences about the presence of Biomphalaria spp. The result was a map of species and risk areas. The obtained risk map permits the association of uncertainties, which can be used to qualify the inferences and it can be thought of as an auxiliary tool for public health strategies.
topic schistosomiasis
geographical information system
geostatistical procedures
Biomphalaria
multiple linear regression
epidemiology
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762010000400030
work_keys_str_mv AT ricardojosedepaulasouzaguimaraes ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT corinacostafreitas ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT lucianovieiradutra ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT ronaldoguilhermecarvalhoscholte ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT flaviatoledomartinsbede ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT fernandarodriguesfonseca ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT ronaldosantosamaral ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT sandracostadrummond ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT carlosalbertofelgueiras ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT guilhermecorreaoliveira ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT omarsantoscarvalho ageoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT ricardojosedepaulasouzaguimaraes geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT corinacostafreitas geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT lucianovieiradutra geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT ronaldoguilhermecarvalhoscholte geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT flaviatoledomartinsbede geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT fernandarodriguesfonseca geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT ronaldosantosamaral geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT sandracostadrummond geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT carlosalbertofelgueiras geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT guilhermecorreaoliveira geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
AT omarsantoscarvalho geoprocessingapproachforstudyingandcontrollingschistosomiasisinthestateofminasgeraisbrazil
_version_ 1725601972179959808