Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN
We focus on the following elliptic system with critical Sobolev exponents: -div∇up-2∇u+m(x)up-2u=λup⁎-2u+(1/η)Gu(u,v), x∈RN; -div∇vq-2∇v+n(x)vq-2v=μvq⁎-2v+(1/η)Gv(u,v), x∈RN; u(x)>0,v(x)>0, x∈RN, where μ,λ>0,1<p≤q<N, either η∈(1,p) or η∈(q,p⁎), and critical Sobolev exponents p⁎=...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2018/6458395 |
Summary: | We focus on the following elliptic system with critical Sobolev exponents: -div∇up-2∇u+m(x)up-2u=λup⁎-2u+(1/η)Gu(u,v), x∈RN; -div∇vq-2∇v+n(x)vq-2v=μvq⁎-2v+(1/η)Gv(u,v), x∈RN; u(x)>0,v(x)>0, x∈RN, where μ,λ>0,1<p≤q<N, either η∈(1,p) or η∈(q,p⁎), and critical Sobolev exponents p⁎=pN/(N-p) and q⁎=qN/(N-q). Conditions on potential functions m(x),n(x) lead to no compact embedding. Relying on concentration-compactness principle, mountain pass lemma, and genus theory, the existence of solutions to the elliptic system with η∈(q,p⁎) or η∈(1,p) will be established. |
---|---|
ISSN: | 1687-9120 1687-9139 |