Clasificacion automática simbólica por medio de algoritmos genéticos

This paper presents a variant in the methods for clustering: a genetic algorithm for clustering through the tools of symbolic data analysis. Their implementation avoids the troubles of clustering classical methods: local minima and dependence of data types: numerical vectors (continuous data type)....

Full description

Bibliographic Details
Main Authors: Fabio Fernández-Jiménez, Alex Murillo Fernández
Format: Article
Language:Spanish
Published: Universidad de Costa Rica 2010-04-01
Series:Revista de Matemática: Teoría y Aplicaciones
Online Access:https://revistas.ucr.ac.cr/index.php/matematica/article/view/307
id doaj-147b489529754c6ab8af9f1ed922f4dd
record_format Article
spelling doaj-147b489529754c6ab8af9f1ed922f4dd2020-11-25T02:16:04ZspaUniversidad de Costa RicaRevista de Matemática: Teoría y Aplicaciones2215-33732010-04-0116228329210.15517/rmta.v16i2.307292Clasificacion automática simbólica por medio de algoritmos genéticosFabio Fernández-Jiménez0Alex Murillo Fernández1Universidad de Costa Rica, Escuela de MatemáticaUniversidad de Costa Rica, Escuela de MatemáticaThis paper presents a variant in the methods for clustering: a genetic algorithm for clustering through the tools of symbolic data analysis. Their implementation avoids the troubles of clustering classical methods: local minima and dependence of data types: numerical vectors (continuous data type).     The proposed method was programmed in MatLab R and it uses an interesting operator of encoding. We compare the clusters by their intra-clusters inertia. We used the following measures for symbolic data types: Ichino-Yaguchi dissimilarity measure, Gowda-Diday dissimilarity measure, Euclidean distance and Hausdorff distance.https://revistas.ucr.ac.cr/index.php/matematica/article/view/307
collection DOAJ
language Spanish
format Article
sources DOAJ
author Fabio Fernández-Jiménez
Alex Murillo Fernández
spellingShingle Fabio Fernández-Jiménez
Alex Murillo Fernández
Clasificacion automática simbólica por medio de algoritmos genéticos
Revista de Matemática: Teoría y Aplicaciones
author_facet Fabio Fernández-Jiménez
Alex Murillo Fernández
author_sort Fabio Fernández-Jiménez
title Clasificacion automática simbólica por medio de algoritmos genéticos
title_short Clasificacion automática simbólica por medio de algoritmos genéticos
title_full Clasificacion automática simbólica por medio de algoritmos genéticos
title_fullStr Clasificacion automática simbólica por medio de algoritmos genéticos
title_full_unstemmed Clasificacion automática simbólica por medio de algoritmos genéticos
title_sort clasificacion automática simbólica por medio de algoritmos genéticos
publisher Universidad de Costa Rica
series Revista de Matemática: Teoría y Aplicaciones
issn 2215-3373
publishDate 2010-04-01
description This paper presents a variant in the methods for clustering: a genetic algorithm for clustering through the tools of symbolic data analysis. Their implementation avoids the troubles of clustering classical methods: local minima and dependence of data types: numerical vectors (continuous data type).     The proposed method was programmed in MatLab R and it uses an interesting operator of encoding. We compare the clusters by their intra-clusters inertia. We used the following measures for symbolic data types: Ichino-Yaguchi dissimilarity measure, Gowda-Diday dissimilarity measure, Euclidean distance and Hausdorff distance.
url https://revistas.ucr.ac.cr/index.php/matematica/article/view/307
work_keys_str_mv AT fabiofernandezjimenez clasificacionautomaticasimbolicapormediodealgoritmosgeneticos
AT alexmurillofernandez clasificacionautomaticasimbolicapormediodealgoritmosgeneticos
_version_ 1724892985364054016