Summary: | In the present work, the impact of climate change on coastal flooding is investigated through a set of interoperable models developed by the authors, following a modular modelling approach and adapting the modelling sequence to two separate objectives with respect to inundation over large-scale areas and coastal protection structures’ design. The modelling toolbox used includes a large-scale wave propagation model, a storm-induced circulation model, and an advanced nearshore wave propagation model based on the higher order Boussinesq-type equations, all of which are presented in detail. Model capabilities are validated and applications are made for projected scenarios of climate change-induced wave and storm surge events, simulating coastal flooding over the low-lying areas of a semi-enclosed bay and testing the effects of different structures on a typical sandy beach (both in northern Greece). This work is among the few in relevant literature that incorporate a fully non-linear wave model to a modelling system aimed at representing coastal flooding. Results highlight the capabilities of the presented modelling approach and set the basis for a comprehensive evaluation of the use of advanced modelling tools for the design of coastal protection and adaptation measures against future climatic pressures.
|