Semantic Segmentation for Aerial Mapping

Mobile robots commonly have to traverse rough terrains. One way to find the easiest traversable path is by determining the types of terrains in the environment. The result of this process can be used by the path planning algorithms to find the best traversable path. In this work, we present an appro...

Full description

Bibliographic Details
Main Authors: Gabriel Martinez-Soltero, Alma Y. Alanis, Nancy Arana-Daniel, Carlos Lopez-Franco
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/9/1456
id doaj-146ebbe6a62b46b79296971996497ff0
record_format Article
spelling doaj-146ebbe6a62b46b79296971996497ff02020-11-25T03:01:11ZengMDPI AGMathematics2227-73902020-08-0181456145610.3390/math8091456Semantic Segmentation for Aerial MappingGabriel Martinez-Soltero0Alma Y. Alanis1Nancy Arana-Daniel2Carlos Lopez-Franco3Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoMobile robots commonly have to traverse rough terrains. One way to find the easiest traversable path is by determining the types of terrains in the environment. The result of this process can be used by the path planning algorithms to find the best traversable path. In this work, we present an approach for terrain classification from aerial images while using a Convolutional Neural Networks at the pixel level. The segmented images can be used in robot mapping and navigation tasks. The performance of two different Convolutional Neural Networks is analyzed in order to choose the best architecture.https://www.mdpi.com/2227-7390/8/9/1456mappingsemantic segmentationconvolutional neural networksunet
collection DOAJ
language English
format Article
sources DOAJ
author Gabriel Martinez-Soltero
Alma Y. Alanis
Nancy Arana-Daniel
Carlos Lopez-Franco
spellingShingle Gabriel Martinez-Soltero
Alma Y. Alanis
Nancy Arana-Daniel
Carlos Lopez-Franco
Semantic Segmentation for Aerial Mapping
Mathematics
mapping
semantic segmentation
convolutional neural networks
unet
author_facet Gabriel Martinez-Soltero
Alma Y. Alanis
Nancy Arana-Daniel
Carlos Lopez-Franco
author_sort Gabriel Martinez-Soltero
title Semantic Segmentation for Aerial Mapping
title_short Semantic Segmentation for Aerial Mapping
title_full Semantic Segmentation for Aerial Mapping
title_fullStr Semantic Segmentation for Aerial Mapping
title_full_unstemmed Semantic Segmentation for Aerial Mapping
title_sort semantic segmentation for aerial mapping
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-08-01
description Mobile robots commonly have to traverse rough terrains. One way to find the easiest traversable path is by determining the types of terrains in the environment. The result of this process can be used by the path planning algorithms to find the best traversable path. In this work, we present an approach for terrain classification from aerial images while using a Convolutional Neural Networks at the pixel level. The segmented images can be used in robot mapping and navigation tasks. The performance of two different Convolutional Neural Networks is analyzed in order to choose the best architecture.
topic mapping
semantic segmentation
convolutional neural networks
unet
url https://www.mdpi.com/2227-7390/8/9/1456
work_keys_str_mv AT gabrielmartinezsoltero semanticsegmentationforaerialmapping
AT almayalanis semanticsegmentationforaerialmapping
AT nancyaranadaniel semanticsegmentationforaerialmapping
AT carloslopezfranco semanticsegmentationforaerialmapping
_version_ 1724694513101832192