Semantic Segmentation for Aerial Mapping
Mobile robots commonly have to traverse rough terrains. One way to find the easiest traversable path is by determining the types of terrains in the environment. The result of this process can be used by the path planning algorithms to find the best traversable path. In this work, we present an appro...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/9/1456 |
id |
doaj-146ebbe6a62b46b79296971996497ff0 |
---|---|
record_format |
Article |
spelling |
doaj-146ebbe6a62b46b79296971996497ff02020-11-25T03:01:11ZengMDPI AGMathematics2227-73902020-08-0181456145610.3390/math8091456Semantic Segmentation for Aerial MappingGabriel Martinez-Soltero0Alma Y. Alanis1Nancy Arana-Daniel2Carlos Lopez-Franco3Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, MexicoMobile robots commonly have to traverse rough terrains. One way to find the easiest traversable path is by determining the types of terrains in the environment. The result of this process can be used by the path planning algorithms to find the best traversable path. In this work, we present an approach for terrain classification from aerial images while using a Convolutional Neural Networks at the pixel level. The segmented images can be used in robot mapping and navigation tasks. The performance of two different Convolutional Neural Networks is analyzed in order to choose the best architecture.https://www.mdpi.com/2227-7390/8/9/1456mappingsemantic segmentationconvolutional neural networksunet |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gabriel Martinez-Soltero Alma Y. Alanis Nancy Arana-Daniel Carlos Lopez-Franco |
spellingShingle |
Gabriel Martinez-Soltero Alma Y. Alanis Nancy Arana-Daniel Carlos Lopez-Franco Semantic Segmentation for Aerial Mapping Mathematics mapping semantic segmentation convolutional neural networks unet |
author_facet |
Gabriel Martinez-Soltero Alma Y. Alanis Nancy Arana-Daniel Carlos Lopez-Franco |
author_sort |
Gabriel Martinez-Soltero |
title |
Semantic Segmentation for Aerial Mapping |
title_short |
Semantic Segmentation for Aerial Mapping |
title_full |
Semantic Segmentation for Aerial Mapping |
title_fullStr |
Semantic Segmentation for Aerial Mapping |
title_full_unstemmed |
Semantic Segmentation for Aerial Mapping |
title_sort |
semantic segmentation for aerial mapping |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-08-01 |
description |
Mobile robots commonly have to traverse rough terrains. One way to find the easiest traversable path is by determining the types of terrains in the environment. The result of this process can be used by the path planning algorithms to find the best traversable path. In this work, we present an approach for terrain classification from aerial images while using a Convolutional Neural Networks at the pixel level. The segmented images can be used in robot mapping and navigation tasks. The performance of two different Convolutional Neural Networks is analyzed in order to choose the best architecture. |
topic |
mapping semantic segmentation convolutional neural networks unet |
url |
https://www.mdpi.com/2227-7390/8/9/1456 |
work_keys_str_mv |
AT gabrielmartinezsoltero semanticsegmentationforaerialmapping AT almayalanis semanticsegmentationforaerialmapping AT nancyaranadaniel semanticsegmentationforaerialmapping AT carloslopezfranco semanticsegmentationforaerialmapping |
_version_ |
1724694513101832192 |