Boussinesq modeling of surface waves due to underwater landslides
Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, an...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2013-05-01
|
Series: | Nonlinear Processes in Geophysics |
Online Access: | http://www.nonlin-processes-geophys.net/20/267/2013/npg-20-267-2013.pdf |
id |
doaj-146853a871d64f5f8e83e39d43d6bb03 |
---|---|
record_format |
Article |
spelling |
doaj-146853a871d64f5f8e83e39d43d6bb032020-11-24T21:34:26ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79462013-05-0120326728510.5194/npg-20-267-2013Boussinesq modeling of surface waves due to underwater landslidesD. DutykhH. KalischConsideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. <br><br> The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.http://www.nonlin-processes-geophys.net/20/267/2013/npg-20-267-2013.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
D. Dutykh H. Kalisch |
spellingShingle |
D. Dutykh H. Kalisch Boussinesq modeling of surface waves due to underwater landslides Nonlinear Processes in Geophysics |
author_facet |
D. Dutykh H. Kalisch |
author_sort |
D. Dutykh |
title |
Boussinesq modeling of surface waves due to underwater landslides |
title_short |
Boussinesq modeling of surface waves due to underwater landslides |
title_full |
Boussinesq modeling of surface waves due to underwater landslides |
title_fullStr |
Boussinesq modeling of surface waves due to underwater landslides |
title_full_unstemmed |
Boussinesq modeling of surface waves due to underwater landslides |
title_sort |
boussinesq modeling of surface waves due to underwater landslides |
publisher |
Copernicus Publications |
series |
Nonlinear Processes in Geophysics |
issn |
1023-5809 1607-7946 |
publishDate |
2013-05-01 |
description |
Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. <br><br> The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up. |
url |
http://www.nonlin-processes-geophys.net/20/267/2013/npg-20-267-2013.pdf |
work_keys_str_mv |
AT ddutykh boussinesqmodelingofsurfacewavesduetounderwaterlandslides AT hkalisch boussinesqmodelingofsurfacewavesduetounderwaterlandslides |
_version_ |
1725949556134248448 |