Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress

Salicylic acid (SA), a naturally occurring plant hormone, is an important signal molecule known to have diverse effects on biotic and abiotic stress tolerance. Its growth-promoting effect on various plants has been shown, but the information on the response of mungbean, an important leguminous plant...

Full description

Bibliographic Details
Main Authors: Nafees Khan, Shabina Syeed, Asim Masood, Rahat Nazar, Noushina Iqbal
Format: Article
Language:English
Published: PAGEPress Publications 2010-01-01
Series:International Journal of Plant Biology
Subjects:
Online Access:http://www.pagepress.org/journals/index.php/pb/article/view/1260
Description
Summary:Salicylic acid (SA), a naturally occurring plant hormone, is an important signal molecule known to have diverse effects on biotic and abiotic stress tolerance. Its growth-promoting effect on various plants has been shown, but the information on the response of mungbean, an important leguminous plant, to SA application under salt stress is limited. Mungbean (Vigna radiata L.) cultivar Pusa Vishal plants grown with 50 mM NaCl were sprayed with 0.1, 0.5, or 1.0 mM SA and basic physiological processes were studied to substantiate our understanding of their role in tolerance to salinity-induced oxidative stress and how much such processes are induced by SA application. Treatment of plants with 0.5 mM SA resulted in a maximum decrease in the content of Na+, Cl-, H2O2, and thiobarbituric acid reactive substances (TBARS), and electrolyte leakage under saline conditions compared to the control. In contrast, this treatment increased N, P, K, and Ca content, activity of antioxidant enzymes, glutathione content, photosynthesis, and yield maximally under nonsaline and saline conditions. The application of higher concentration of SA (1.0 mM) either proved inhibitory or was of no additional benefit. It was concluded that 0.5 mM SA alleviates salinity-inhibited photosynthesis and yield through a decrease in Na+, Cl-, H2O2, and TBARS content, and electrolyte leakage, and an increase in N, P, K, and Ca content, activity of antioxidant enzymes, and glutathione content.
ISSN:2037-0156
2037-0164