Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity
In this contribution, large-scale commercial aeronautical ad-hoc networks are evaluated. The investigation is based on a simulation environment with input from 2016 flight schedule and aircraft performance databases for flight movement modelling, along with a defined infrastructure of ground gateway...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Institute for Aerospace Research “Elie Carafoli” - INCAS
2018-06-01
|
Series: | INCAS Bulletin |
Subjects: | |
Online Access: | http://bulletin.incas.ro/files/buchter_milshtein_vol_10_iss_2.pdf |
id |
doaj-1461a2a89ef741ce9a1c21aa8b8676e7 |
---|---|
record_format |
Article |
spelling |
doaj-1461a2a89ef741ce9a1c21aa8b8676e72020-11-24T21:47:28ZengNational Institute for Aerospace Research “Elie Carafoli” - INCASINCAS Bulletin2066-82012247-45282018-06-01102172610.13111/2066-8201.2018.10.2.3Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite ConnectivityKai-Daniel BÜCHTER0Oleg MILSHTEIN1Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Str. 1, 82024 Taufkirchen, Germany, kai-daniel.buechter@bauhaus-luftfahrt.net*1Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Str. 1, 82024 Taufkirchen, GermanyIn this contribution, large-scale commercial aeronautical ad-hoc networks are evaluated. The investigation is based on a simulation environment with input from 2016 flight schedule and aircraft performance databases for flight movement modelling, along with a defined infrastructure of ground gateways and communication satellites. A cluster-based algorithm is used to build the communication network topology between aircraft. Cloud top pressure data can be considered to estimate cloud height and evaluate the impact of link obscuration on network availability, assuming a free-space optics-based communication network. The effects of communication range, satellite availability, fleet equipage ratio and clouds are discussed. It is shown how network reach and performance can be enhanced by adding taps to the network in the form of high-speed satellite links. The effect of adding these is two-fold: firstly, network reach can be increased by connecting remote aircraft clusters. Secondly, larger clusters can effectively be split into smaller ones in order to increase performance especially with regard to hop count and available overall capacity. In a realistic scenario concerning communication range and with moderate numbers of high-speed satellite terminals, on average, 78% of all widebody aircraft can be reached. With clouds considered (assuming laser links), this number reduces by 10%.http://bulletin.incas.ro/files/buchter_milshtein_vol_10_iss_2.pdfAeronautical Ad-hoc NetworksAeronautical TelecommunicationsLaser CommunicationLaser Communication |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kai-Daniel BÜCHTER Oleg MILSHTEIN |
spellingShingle |
Kai-Daniel BÜCHTER Oleg MILSHTEIN Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity INCAS Bulletin Aeronautical Ad-hoc Networks Aeronautical Telecommunications Laser Communication Laser Communication |
author_facet |
Kai-Daniel BÜCHTER Oleg MILSHTEIN |
author_sort |
Kai-Daniel BÜCHTER |
title |
Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity |
title_short |
Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity |
title_full |
Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity |
title_fullStr |
Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity |
title_full_unstemmed |
Scaling of Airborne Ad-hoc Network Metrics with Link Range and Satellite Connectivity |
title_sort |
scaling of airborne ad-hoc network metrics with link range and satellite connectivity |
publisher |
National Institute for Aerospace Research “Elie Carafoli” - INCAS |
series |
INCAS Bulletin |
issn |
2066-8201 2247-4528 |
publishDate |
2018-06-01 |
description |
In this contribution, large-scale commercial aeronautical ad-hoc networks are evaluated. The investigation is based on a simulation environment with input from 2016 flight schedule and aircraft performance databases for flight movement modelling, along with a defined infrastructure of ground gateways and communication satellites. A cluster-based algorithm is used to build the communication network topology between aircraft. Cloud top pressure data can be considered to estimate cloud height and evaluate the impact of link obscuration on network availability, assuming a free-space optics-based communication network. The effects of communication range, satellite availability, fleet equipage ratio and clouds are discussed. It is shown how network reach and performance can be enhanced by adding taps to the network in the form of high-speed satellite links. The effect of adding these is two-fold: firstly, network reach can be increased by connecting remote aircraft clusters. Secondly, larger clusters can effectively be split into smaller ones in order to increase performance especially with regard to hop count and available overall capacity. In a realistic scenario concerning communication range and with moderate numbers of high-speed satellite terminals, on average, 78% of all widebody aircraft can be reached. With clouds considered (assuming laser links), this number reduces by 10%. |
topic |
Aeronautical Ad-hoc Networks Aeronautical Telecommunications Laser Communication Laser Communication |
url |
http://bulletin.incas.ro/files/buchter_milshtein_vol_10_iss_2.pdf |
work_keys_str_mv |
AT kaidanielbuchter scalingofairborneadhocnetworkmetricswithlinkrangeandsatelliteconnectivity AT olegmilshtein scalingofairborneadhocnetworkmetricswithlinkrangeandsatelliteconnectivity |
_version_ |
1725896682441277440 |