Non-Intrusive Battery Health Monitoring

The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS) in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH), using only the post-treatment of the battery...

Full description

Bibliographic Details
Main Authors: Gajewski Laurent, Cenac-Morthe Celine, Carre Aurore, Simon Patrice, Taberna Pierre-Louis
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:E3S Web of Conferences
Online Access:https://doi.org/10.1051/e3sconf/20171607006
Description
Summary:The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS) in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH), using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.
ISSN:2267-1242