Marine Organism Detection and Classification from Underwater Vision Based on the Deep CNN Method

Seabed fishing depends on humans in common, for instance, the sea cucumber, sea urchin, and scallop fishing, which is always a very dangerous task. Considering the underwater complex environment conditions such as low temperature, dim vision, and high pressure, collecting the marine products using u...

Full description

Bibliographic Details
Main Authors: Fenglei Han, Jingzheng Yao, Haitao Zhu, Chunhui Wang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/3937580
Description
Summary:Seabed fishing depends on humans in common, for instance, the sea cucumber, sea urchin, and scallop fishing, which is always a very dangerous task. Considering the underwater complex environment conditions such as low temperature, dim vision, and high pressure, collecting the marine products using underwater robots is commonly regarded as a feasible solution. The key technique of the underwater robot development is to detect and locate the main target from underwater vision. This research is based on the deep convolutional neural network (CNN) to realize the target recognition from underwater vision. The RPN (Region Proposal Network) is used to optimize the feature extraction capability. Deep learning dataset is prepared using an underwater video obtained from a sea cucumber fishing ROV (Remote Operated Vehicle). The inspiration of the network structure and the improvements come from the Faster RCNN and Hypernet method, and for the underwater dataset, the method proposed in this paper shows a good performance of recall and object detection accuracy. The detection runs with a speed of 17 fps on a GPU, which is applicable to be used for real-time processing.
ISSN:1024-123X
1563-5147