A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation

Traditional Wireless Power Transfer (WPT) systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc.) due to the capacity constraints of power electronic devices. A novel WPT system b...

Full description

Bibliographic Details
Main Authors: Yong Li, Ruikun Mai, Tianren Lin, Hongjian Sun, Zhengyou He
Format: Article
Language:English
Published: MDPI AG 2017-02-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/10/2/174
Description
Summary:Traditional Wireless Power Transfer (WPT) systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc.) due to the capacity constraints of power electronic devices. A novel WPT system based on dual transmitters and dual receivers is proposed in this paper to upgrade the power capacity of the WPT system. The reliability and availability of the proposed WPT system can be dramatically improved due to the four energy transmission paths. A three-dimensional finite element analysis (FEA) tool ANSYS MAXWELL (ANSYS, Canonsburg, PA, USA) is adopted to investigate the proposed magnetic coupling structure. Besides, the effects of the crossing coupling mutual inductances among the transmitters and receivers are analyzed. It shows that the same-side cross couplings will decrease the efficiency and transmitted power. Decoupling transformers are employed to mitigate the effects of the same-side cross couplings. Meanwhile, the output voltage in the secondary side can be regulated at its designed value with a fast response performance, and the system can continue work even with a faulty inverter. Finally, a scale-down experimental setup is provided to verify the proposed approach. The experimental results indicate that the proposed method could improve the transmitted power capacity, overall efficiency and reliability, simultaneously. The proposed WPT structure is a potential alternative for high power applications.
ISSN:1996-1073