CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model

Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative str...

Full description

Bibliographic Details
Main Authors: Md Jamal Uddin, Jeewon Jeong, Eun Seon Pak, Hunjoo Ha
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Oxidative Medicine and Cellular Longevity
Online Access:http://dx.doi.org/10.1155/2021/9947772
id doaj-143c36873d764843a2fcb2e47269e6a8
record_format Article
spelling doaj-143c36873d764843a2fcb2e47269e6a82021-07-19T01:04:22ZengHindawi LimitedOxidative Medicine and Cellular Longevity1942-09942021-01-01202110.1155/2021/9947772CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse ModelMd Jamal Uddin0Jeewon Jeong1Eun Seon Pak2Hunjoo Ha3Graduate School of Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesGraduate School of Pharmaceutical SciencesAcute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.http://dx.doi.org/10.1155/2021/9947772
collection DOAJ
language English
format Article
sources DOAJ
author Md Jamal Uddin
Jeewon Jeong
Eun Seon Pak
Hunjoo Ha
spellingShingle Md Jamal Uddin
Jeewon Jeong
Eun Seon Pak
Hunjoo Ha
CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model
Oxidative Medicine and Cellular Longevity
author_facet Md Jamal Uddin
Jeewon Jeong
Eun Seon Pak
Hunjoo Ha
author_sort Md Jamal Uddin
title CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model
title_short CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model
title_full CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model
title_fullStr CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model
title_full_unstemmed CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model
title_sort co-releasing molecule-2 prevents acute kidney injury through suppression of ros-fyn-er stress signaling in mouse model
publisher Hindawi Limited
series Oxidative Medicine and Cellular Longevity
issn 1942-0994
publishDate 2021-01-01
description Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.
url http://dx.doi.org/10.1155/2021/9947772
work_keys_str_mv AT mdjamaluddin coreleasingmolecule2preventsacutekidneyinjurythroughsuppressionofrosfynerstresssignalinginmousemodel
AT jeewonjeong coreleasingmolecule2preventsacutekidneyinjurythroughsuppressionofrosfynerstresssignalinginmousemodel
AT eunseonpak coreleasingmolecule2preventsacutekidneyinjurythroughsuppressionofrosfynerstresssignalinginmousemodel
AT hunjooha coreleasingmolecule2preventsacutekidneyinjurythroughsuppressionofrosfynerstresssignalinginmousemodel
_version_ 1721295519224954880