Analysis of the cavitating flow induced by an ultrasonic horn – Experimental investigation on the influence of actuation phase, amplitude and geometrical boundary conditions
Till today, factors influencing the formation and collapse of densely distributed, interacting cavitation bubbles are only qualitatively understood. The aim of the present study is to investigate experimentally the influence of selected boundary conditions on the number and size distribution of cav...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2014-03-01
|
Series: | EPJ Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/epjconf/20146702079 |
Summary: | Till today, factors influencing the formation and collapse of densely distributed, interacting cavitation bubbles are only qualitatively understood. The aim of the present study is to investigate experimentally the influence of selected boundary conditions on the number and size distribution of cavitation bubbles created by an ultrasonic horn (sonotrode). Cavitation bubble clouds below the sonotrode were recorded by means of phase-locked shadowgraphy imaging. The time integrated number of cavitation bubbles was found to decrease exponentially with growing bubble radius. The number of bubbles was increased with growing actuation amplitude and gap width between the sonotrode tip and an opposing solid wall. Furthermore, it could be shown that the number of cavitation bubbles depends on the actuation phase. Future investigations will focus on establishing a statistical relation between the number and size distribution of cavitation bubbles in the near wall region and the resulting cavitation erosion on solid surfaces.
|
---|---|
ISSN: | 2100-014X |