Drug resistance evaluation in novel 3D in vitro model

Ovarian cancer rates the highest mortality among all gynecological malignancies. The main reason for high mortality is the development of drug resistance. It can be related to changes in the expression of many drug resistance genes as well as expression of extracellular matrix proteins and cell dens...

Full description

Bibliographic Details
Main Authors: Marta Nowacka, Karolina Sterzynska, Malgorzata Andrzejewska, Michal Nowicki, Radoslaw Januchowski
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332221003218
Description
Summary:Ovarian cancer rates the highest mortality among all gynecological malignancies. The main reason for high mortality is the development of drug resistance. It can be related to changes in the expression of many drug resistance genes as well as expression of extracellular matrix proteins and cell density in the tumor. We developed a simple two-dimensional and three-dimensional model of drug sensitive A2780 and resistant to cisplatin and paclitaxel variants of ovarian cancer cell line. Using MTT assay, we compared drug resistance in two-dimensional and three-dimensional cell culture conditions. Real-time polymerase chain reaction analysis was used to compare the expression of drug resistance genes. The expression of proteins in spheroids was determined by immunohistochemistry. We observed a moderate increase in cisplatin resistance and a significant increase in paclitaxel resistance between two-dimensional and three-dimensional cell culture conditions. Our findings show that changes in the expression of drug resistance genes may play a crucial role in the drug resistance of cancer cells in traditional cell culture. On the other hand, the drug resistance in spheroids may result from different mechanisms such as cell density in the spheroid, extracellular matrix proteins expression and drug capacity to diffuse into the spheroid.
ISSN:0753-3322