Group Structure and Geometric Interpretation of the Embedded Scator Space
The set of scators was introduced by Fernández-Guasti and Zaldívar in the context of special relativity and the deformed Lorentz metric. In this paper, the scator space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/8/1504 |
id |
doaj-13f269d8644d4203b83fb99afb0d64a1 |
---|---|
record_format |
Article |
spelling |
doaj-13f269d8644d4203b83fb99afb0d64a12021-08-26T14:24:16ZengMDPI AGSymmetry2073-89942021-08-01131504150410.3390/sym13081504Group Structure and Geometric Interpretation of the Embedded Scator SpaceJan L. Cieśliński0Artur Kobus1Wydział Fizyki, Uniwersytet w Białymstoku, ul. Ciołkowskiego 1L, 15-245 Białystok, PolandWydział Fizyki, Uniwersytet w Białymstoku, ul. Ciołkowskiego 1L, 15-245 Białystok, PolandThe set of scators was introduced by Fernández-Guasti and Zaldívar in the context of special relativity and the deformed Lorentz metric. In this paper, the scator space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></semantics></math></inline-formula> (for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula>) is interpreted as an intersection of some quadrics in the pseudo-Euclidean space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula> with zero signature. The scator product, nondistributive and rather counterintuitive in its original formulation, is represented as a natural commutative product in this extended space. What is more, the set of invertible embedded scators is a commutative group. This group is isomorphic to the group of all symmetries of the embedded scator space, i.e., isometries (in the space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula>) preserving the scator quadrics.https://www.mdpi.com/2073-8994/13/8/1504scatorsfundamental embeddingorthogonal groupsquadricsLorentz velocity addition formula |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jan L. Cieśliński Artur Kobus |
spellingShingle |
Jan L. Cieśliński Artur Kobus Group Structure and Geometric Interpretation of the Embedded Scator Space Symmetry scators fundamental embedding orthogonal groups quadrics Lorentz velocity addition formula |
author_facet |
Jan L. Cieśliński Artur Kobus |
author_sort |
Jan L. Cieśliński |
title |
Group Structure and Geometric Interpretation of the Embedded Scator Space |
title_short |
Group Structure and Geometric Interpretation of the Embedded Scator Space |
title_full |
Group Structure and Geometric Interpretation of the Embedded Scator Space |
title_fullStr |
Group Structure and Geometric Interpretation of the Embedded Scator Space |
title_full_unstemmed |
Group Structure and Geometric Interpretation of the Embedded Scator Space |
title_sort |
group structure and geometric interpretation of the embedded scator space |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-08-01 |
description |
The set of scators was introduced by Fernández-Guasti and Zaldívar in the context of special relativity and the deformed Lorentz metric. In this paper, the scator space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></semantics></math></inline-formula> (for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula>) is interpreted as an intersection of some quadrics in the pseudo-Euclidean space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula> with zero signature. The scator product, nondistributive and rather counterintuitive in its original formulation, is represented as a natural commutative product in this extended space. What is more, the set of invertible embedded scators is a commutative group. This group is isomorphic to the group of all symmetries of the embedded scator space, i.e., isometries (in the space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula>) preserving the scator quadrics. |
topic |
scators fundamental embedding orthogonal groups quadrics Lorentz velocity addition formula |
url |
https://www.mdpi.com/2073-8994/13/8/1504 |
work_keys_str_mv |
AT janlcieslinski groupstructureandgeometricinterpretationoftheembeddedscatorspace AT arturkobus groupstructureandgeometricinterpretationoftheembeddedscatorspace |
_version_ |
1721189554816286720 |