Group Structure and Geometric Interpretation of the Embedded Scator Space

The set of scators was introduced by Fernández-Guasti and Zaldívar in the context of special relativity and the deformed Lorentz metric. In this paper, the scator space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><...

Full description

Bibliographic Details
Main Authors: Jan L. Cieśliński, Artur Kobus
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/8/1504
id doaj-13f269d8644d4203b83fb99afb0d64a1
record_format Article
spelling doaj-13f269d8644d4203b83fb99afb0d64a12021-08-26T14:24:16ZengMDPI AGSymmetry2073-89942021-08-01131504150410.3390/sym13081504Group Structure and Geometric Interpretation of the Embedded Scator SpaceJan L. Cieśliński0Artur Kobus1Wydział Fizyki, Uniwersytet w Białymstoku, ul. Ciołkowskiego 1L, 15-245 Białystok, PolandWydział Fizyki, Uniwersytet w Białymstoku, ul. Ciołkowskiego 1L, 15-245 Białystok, PolandThe set of scators was introduced by Fernández-Guasti and Zaldívar in the context of special relativity and the deformed Lorentz metric. In this paper, the scator space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></semantics></math></inline-formula> (for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula>) is interpreted as an intersection of some quadrics in the pseudo-Euclidean space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula> with zero signature. The scator product, nondistributive and rather counterintuitive in its original formulation, is represented as a natural commutative product in this extended space. What is more, the set of invertible embedded scators is a commutative group. This group is isomorphic to the group of all symmetries of the embedded scator space, i.e., isometries (in the space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula>) preserving the scator quadrics.https://www.mdpi.com/2073-8994/13/8/1504scatorsfundamental embeddingorthogonal groupsquadricsLorentz velocity addition formula
collection DOAJ
language English
format Article
sources DOAJ
author Jan L. Cieśliński
Artur Kobus
spellingShingle Jan L. Cieśliński
Artur Kobus
Group Structure and Geometric Interpretation of the Embedded Scator Space
Symmetry
scators
fundamental embedding
orthogonal groups
quadrics
Lorentz velocity addition formula
author_facet Jan L. Cieśliński
Artur Kobus
author_sort Jan L. Cieśliński
title Group Structure and Geometric Interpretation of the Embedded Scator Space
title_short Group Structure and Geometric Interpretation of the Embedded Scator Space
title_full Group Structure and Geometric Interpretation of the Embedded Scator Space
title_fullStr Group Structure and Geometric Interpretation of the Embedded Scator Space
title_full_unstemmed Group Structure and Geometric Interpretation of the Embedded Scator Space
title_sort group structure and geometric interpretation of the embedded scator space
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-08-01
description The set of scators was introduced by Fernández-Guasti and Zaldívar in the context of special relativity and the deformed Lorentz metric. In this paper, the scator space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></semantics></math></inline-formula> (for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula>) is interpreted as an intersection of some quadrics in the pseudo-Euclidean space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula> with zero signature. The scator product, nondistributive and rather counterintuitive in its original formulation, is represented as a natural commutative product in this extended space. What is more, the set of invertible embedded scators is a commutative group. This group is isomorphic to the group of all symmetries of the embedded scator space, i.e., isometries (in the space of dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mi>n</mi></msup></semantics></math></inline-formula>) preserving the scator quadrics.
topic scators
fundamental embedding
orthogonal groups
quadrics
Lorentz velocity addition formula
url https://www.mdpi.com/2073-8994/13/8/1504
work_keys_str_mv AT janlcieslinski groupstructureandgeometricinterpretationoftheembeddedscatorspace
AT arturkobus groupstructureandgeometricinterpretationoftheembeddedscatorspace
_version_ 1721189554816286720