The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis
Although corrosion of reinforcement is a well-known issue for the construction industry, there are still open questions about some fundamentals of corrosion in reinforced concrete. These points include, among others, which are the most sensitive locations of the steel/concrete interface for pitting...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://www.matec-conferences.org/articles/matecconf/pdf/2019/38/matecconf_cs18_10011.pdf |
id |
doaj-13e5d6166917447293fe1d1c0d68f702 |
---|---|
record_format |
Article |
spelling |
doaj-13e5d6166917447293fe1d1c0d68f7022021-02-02T05:13:53ZengEDP SciencesMATEC Web of Conferences2261-236X2019-01-012891001110.1051/matecconf/201928910011matecconf_cs18_10011The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysisRossi Emanuele0Nijland Timo1Çopuroğlu Oğuzhan2Polder RobŠavija Branko3Delft University of Technology, Faculty of Civil Engineering & Geosciences Department of Materials & EnvironmentTNO Buildings, Infrastructures and MaritimeDelft University of Technology, Faculty of Civil Engineering & Geosciences Department of Materials & EnvironmentDelft University of Technology, Faculty of Civil Engineering & Geosciences Department of Materials & EnvironmentAlthough corrosion of reinforcement is a well-known issue for the construction industry, there are still open questions about some fundamentals of corrosion in reinforced concrete. These points include, among others, which are the most sensitive locations of the steel/concrete interface for pitting corrosion to initiate and to propagate. In this study, X-ray computed tomography (CT-scan) is used to characterize eight 20-years-old reinforced concrete cores naturally deteriorated due to chloride-induced corrosion. The volume loss due to corrosion of the reinforcement was quantified through image analysis of CT-scans. The volume loss of the steel was found to be higher for steel rebars embedded in Portland cement specimens rather than in blended cement specimens. Furthermore, CT-scans revealed that the deepest and most frequent corrosion pits, as well as the consequent highest volume loss of steel, were present at the portion of the reinforcement closer to the outdoor environment and in proximity to air voids at the steel/concrete interface. As a consequence, the highest decrease of structural performance of the rebars would be likely localized at those locations. Therefore, the presence of interfacial air voids should be considered as relevant factor when assessing the risk of corrosion of reinforced concrete structures.https://www.matec-conferences.org/articles/matecconf/pdf/2019/38/matecconf_cs18_10011.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rossi Emanuele Nijland Timo Çopuroğlu Oğuzhan Polder Rob Šavija Branko |
spellingShingle |
Rossi Emanuele Nijland Timo Çopuroğlu Oğuzhan Polder Rob Šavija Branko The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis MATEC Web of Conferences |
author_facet |
Rossi Emanuele Nijland Timo Çopuroğlu Oğuzhan Polder Rob Šavija Branko |
author_sort |
Rossi Emanuele |
title |
The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis |
title_short |
The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis |
title_full |
The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis |
title_fullStr |
The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis |
title_full_unstemmed |
The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis |
title_sort |
influence of defects at the steel/concrete interface for pitting corrosion initiation studied through x-ray computed tomography and image analysis |
publisher |
EDP Sciences |
series |
MATEC Web of Conferences |
issn |
2261-236X |
publishDate |
2019-01-01 |
description |
Although corrosion of reinforcement is a well-known issue for the construction industry, there are still open questions about some fundamentals of corrosion in reinforced concrete. These points include, among others, which are the most sensitive locations of the steel/concrete interface for pitting corrosion to initiate and to propagate. In this study, X-ray computed tomography (CT-scan) is used to characterize eight 20-years-old reinforced concrete cores naturally deteriorated due to chloride-induced corrosion. The volume loss due to corrosion of the reinforcement was quantified through image analysis of CT-scans. The volume loss of the steel was found to be higher for steel rebars embedded in Portland cement specimens rather than in blended cement specimens. Furthermore, CT-scans revealed that the deepest and most frequent corrosion pits, as well as the consequent highest volume loss of steel, were present at the portion of the reinforcement closer to the outdoor environment and in proximity to air voids at the steel/concrete interface. As a consequence, the highest decrease of structural performance of the rebars would be likely localized at those locations. Therefore, the presence of interfacial air voids should be considered as relevant factor when assessing the risk of corrosion of reinforced concrete structures. |
url |
https://www.matec-conferences.org/articles/matecconf/pdf/2019/38/matecconf_cs18_10011.pdf |
work_keys_str_mv |
AT rossiemanuele theinfluenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT nijlandtimo theinfluenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT copurogluoguzhan theinfluenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT polderrob theinfluenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT savijabranko theinfluenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT rossiemanuele influenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT nijlandtimo influenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT copurogluoguzhan influenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT polderrob influenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis AT savijabranko influenceofdefectsatthesteelconcreteinterfaceforpittingcorrosioninitiationstudiedthroughxraycomputedtomographyandimageanalysis |
_version_ |
1724304035851272192 |