A note on operators from K"{o}the function spaces to $c_0(Gamma)$
It is well known that every operator from $E = L_p$, $1 leq p <infty$ to $c_0$ is narrow. We show that this result can beextended to a more general class of K"{o}the function spaces$E$.
Main Authors: | Krasikova I.V., Popov M.M. |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2012-06-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/87/76 |
Similar Items
-
A note on operators from Kothe function spaces to $c_0(\Gamma)$
by: I. V. Krasikova, et al.
Published: (2013-01-01) -
Замiтка про оператори з функцiональних просторiв Кете у простiр $c_0(\Gamma)$
by: I.V. Krasikova, et al.
Published: (2012-06-01) -
Points of narrowness and uniformly narrow operators
by: A.I. Gumenchuk, et al.
Published: (2017-06-01) -
Study of B0 -> K*0 gamma, Bs0 -> phi gamma and Bs0 -> K*0 gamma decays using converted photons with the LHCb detector
by: Beaucourt, Léo
Published: (2016) -
Note on bases in algebras of analytic functions on Banach spaces
by: I.V. Chernega, et al.
Published: (2019-06-01)