A note on operators from K"{o}the function spaces to $c_0(Gamma)$
It is well known that every operator from $E = L_p$, $1 leq p <infty$ to $c_0$ is narrow. We show that this result can beextended to a more general class of K"{o}the function spaces$E$.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2012-06-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/87/76 |
id |
doaj-1393559d050b41f3a337cddab52cb02f |
---|---|
record_format |
Article |
spelling |
doaj-1393559d050b41f3a337cddab52cb02f2020-11-24T21:24:21ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272012-06-01416771A note on operators from K"{o}the function spaces to $c_0(Gamma)$Krasikova I.V.Popov M.M.It is well known that every operator from $E = L_p$, $1 leq p <infty$ to $c_0$ is narrow. We show that this result can beextended to a more general class of K"{o}the function spaces$E$.http://journals.pu.if.ua/index.php/cmp/article/view/87/76 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Krasikova I.V. Popov M.M. |
spellingShingle |
Krasikova I.V. Popov M.M. A note on operators from K"{o}the function spaces to $c_0(Gamma)$ Karpatsʹkì Matematičnì Publìkacìï |
author_facet |
Krasikova I.V. Popov M.M. |
author_sort |
Krasikova I.V. |
title |
A note on operators from K"{o}the function spaces to $c_0(Gamma)$ |
title_short |
A note on operators from K"{o}the function spaces to $c_0(Gamma)$ |
title_full |
A note on operators from K"{o}the function spaces to $c_0(Gamma)$ |
title_fullStr |
A note on operators from K"{o}the function spaces to $c_0(Gamma)$ |
title_full_unstemmed |
A note on operators from K"{o}the function spaces to $c_0(Gamma)$ |
title_sort |
note on operators from k"{o}the function spaces to $c_0(gamma)$ |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 |
publishDate |
2012-06-01 |
description |
It is well known that every operator from $E = L_p$, $1 leq p <infty$ to $c_0$ is narrow. We show that this result can beextended to a more general class of K"{o}the function spaces$E$. |
url |
http://journals.pu.if.ua/index.php/cmp/article/view/87/76 |
work_keys_str_mv |
AT krasikovaiv anoteonoperatorsfromkothefunctionspacestoc0gamma AT popovmm anoteonoperatorsfromkothefunctionspacestoc0gamma AT krasikovaiv noteonoperatorsfromkothefunctionspacestoc0gamma AT popovmm noteonoperatorsfromkothefunctionspacestoc0gamma |
_version_ |
1725988805108826112 |