Crystallization engineering as a route to epitaxial strain control

The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain eng...

Full description

Bibliographic Details
Main Authors: Andrew R. Akbashev, Aleksandr V. Plokhikh, Dmitri Barbash, Samuel E. Lofland, Jonathan E. Spanier
Format: Article
Language:English
Published: AIP Publishing LLC 2015-10-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.4933064
Description
Summary:The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO3 and (001)LaAlO3 substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO3 phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO3 results in a coherently strained film, the same films obtained on (001)LaAlO3 showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001)SrTiO3. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state.
ISSN:2166-532X