Glider-based observations of CO<sub>2</sub> in the Labrador Sea

<p>Ocean gliders can provide high-spatial- and temporal-resolution data and target specific ocean regions at a low cost compared to ship-based measurements. An important gap, however, given the need for carbon measurements, is the lack of capable sensors for glider-based <span class="i...

Full description

Bibliographic Details
Main Authors: N. von Oppeln-Bronikowski, B. de Young, D. Atamanchuk, D. Wallace
Format: Article
Language:English
Published: Copernicus Publications 2021-01-01
Series:Ocean Science
Online Access:https://os.copernicus.org/articles/17/1/2021/os-17-1-2021.pdf
id doaj-137c10bc6cd7406288f0282e23f4ddf2
record_format Article
spelling doaj-137c10bc6cd7406288f0282e23f4ddf22021-01-04T13:27:08ZengCopernicus PublicationsOcean Science1812-07841812-07922021-01-011711610.5194/os-17-1-2021Glider-based observations of CO<sub>2</sub> in the Labrador SeaN. von Oppeln-Bronikowski0B. de Young1D. Atamanchuk2D. Wallace3Department of Physics and Physical Oceanography, Memorial University, 283 Prince Phillip Drive, St. John's, NL, A1B3X7, CanadaDepartment of Physics and Physical Oceanography, Memorial University, 283 Prince Phillip Drive, St. John's, NL, A1B3X7, CanadaDepartment of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H4R2, CanadaDepartment of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H4R2, Canada<p>Ocean gliders can provide high-spatial- and temporal-resolution data and target specific ocean regions at a low cost compared to ship-based measurements. An important gap, however, given the need for carbon measurements, is the lack of capable sensors for glider-based <span class="inline-formula">CO<sub>2</sub></span> measurements. We need to develop robust methods to evaluate novel <span class="inline-formula">CO<sub>2</sub></span> sensors for gliders. Here we present results from testing the performance of a novel <span class="inline-formula">CO<sub>2</sub></span> optode sensor <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx1">Atamanchuk et al.</a>, <a href="#bib1.bibx1">2014</a>)</span>, deployed on a Slocum glider, in the Labrador Sea and on the Newfoundland Shelf. This paper (1) investigates the performance of the <span class="inline-formula">CO<sub>2</sub></span> optode on two glider deployments, (2) demonstrates the utility of using the autonomous SeaCycler profiler mooring <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx47">Send et al.</a>, <a href="#bib1.bibx47">2013</a>; <a href="#bib1.bibx3">Atamanchuk et al.</a>, <a href="#bib1.bibx3">2020</a>)</span> to improve in situ sensor data, and (3) presents data from moored and mobile platforms to resolve fine scales of temporal and spatial variability of <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> in the Labrador Sea. The Aanderaa <span class="inline-formula">CO<sub>2</sub></span> optode is an early prototype sensor that has not undergone rigorous testing on a glider but is compact and uses little power. Our analysis shows that the sensor suffers from instability and slow response times (<span class="inline-formula"><i>τ</i><sub>95</sub>&gt;100</span> s), affected by different behavior when profiling through small (<span class="inline-formula">&lt;3</span> <span class="inline-formula"><sup>∘</sup></span>C) vs. large (<span class="inline-formula">&gt;10</span> <span class="inline-formula"><sup>∘</sup></span>C) changes in temperature over similar time intervals. We compare the glider and SeaCycler <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula">CO<sub>2</sub></span> observations and estimate the glider data uncertainty as <span class="inline-formula">±</span> 6.14 and <span class="inline-formula">±</span> 44.01 <span class="inline-formula">µ</span>atm, respectively. From the Labrador Sea mission, we point to short timescales (<span class="inline-formula">&lt;7</span> d) and distance (<span class="inline-formula">&lt;15</span> km) scales as important drivers of change in this region.</p>https://os.copernicus.org/articles/17/1/2021/os-17-1-2021.pdf
collection DOAJ
language English
format Article
sources DOAJ
author N. von Oppeln-Bronikowski
B. de Young
D. Atamanchuk
D. Wallace
spellingShingle N. von Oppeln-Bronikowski
B. de Young
D. Atamanchuk
D. Wallace
Glider-based observations of CO<sub>2</sub> in the Labrador Sea
Ocean Science
author_facet N. von Oppeln-Bronikowski
B. de Young
D. Atamanchuk
D. Wallace
author_sort N. von Oppeln-Bronikowski
title Glider-based observations of CO<sub>2</sub> in the Labrador Sea
title_short Glider-based observations of CO<sub>2</sub> in the Labrador Sea
title_full Glider-based observations of CO<sub>2</sub> in the Labrador Sea
title_fullStr Glider-based observations of CO<sub>2</sub> in the Labrador Sea
title_full_unstemmed Glider-based observations of CO<sub>2</sub> in the Labrador Sea
title_sort glider-based observations of co<sub>2</sub> in the labrador sea
publisher Copernicus Publications
series Ocean Science
issn 1812-0784
1812-0792
publishDate 2021-01-01
description <p>Ocean gliders can provide high-spatial- and temporal-resolution data and target specific ocean regions at a low cost compared to ship-based measurements. An important gap, however, given the need for carbon measurements, is the lack of capable sensors for glider-based <span class="inline-formula">CO<sub>2</sub></span> measurements. We need to develop robust methods to evaluate novel <span class="inline-formula">CO<sub>2</sub></span> sensors for gliders. Here we present results from testing the performance of a novel <span class="inline-formula">CO<sub>2</sub></span> optode sensor <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx1">Atamanchuk et al.</a>, <a href="#bib1.bibx1">2014</a>)</span>, deployed on a Slocum glider, in the Labrador Sea and on the Newfoundland Shelf. This paper (1) investigates the performance of the <span class="inline-formula">CO<sub>2</sub></span> optode on two glider deployments, (2) demonstrates the utility of using the autonomous SeaCycler profiler mooring <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx47">Send et al.</a>, <a href="#bib1.bibx47">2013</a>; <a href="#bib1.bibx3">Atamanchuk et al.</a>, <a href="#bib1.bibx3">2020</a>)</span> to improve in situ sensor data, and (3) presents data from moored and mobile platforms to resolve fine scales of temporal and spatial variability of <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> in the Labrador Sea. The Aanderaa <span class="inline-formula">CO<sub>2</sub></span> optode is an early prototype sensor that has not undergone rigorous testing on a glider but is compact and uses little power. Our analysis shows that the sensor suffers from instability and slow response times (<span class="inline-formula"><i>τ</i><sub>95</sub>&gt;100</span> s), affected by different behavior when profiling through small (<span class="inline-formula">&lt;3</span> <span class="inline-formula"><sup>∘</sup></span>C) vs. large (<span class="inline-formula">&gt;10</span> <span class="inline-formula"><sup>∘</sup></span>C) changes in temperature over similar time intervals. We compare the glider and SeaCycler <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula">CO<sub>2</sub></span> observations and estimate the glider data uncertainty as <span class="inline-formula">±</span> 6.14 and <span class="inline-formula">±</span> 44.01 <span class="inline-formula">µ</span>atm, respectively. From the Labrador Sea mission, we point to short timescales (<span class="inline-formula">&lt;7</span> d) and distance (<span class="inline-formula">&lt;15</span> km) scales as important drivers of change in this region.</p>
url https://os.copernicus.org/articles/17/1/2021/os-17-1-2021.pdf
work_keys_str_mv AT nvonoppelnbronikowski gliderbasedobservationsofcosub2subinthelabradorsea
AT bdeyoung gliderbasedobservationsofcosub2subinthelabradorsea
AT datamanchuk gliderbasedobservationsofcosub2subinthelabradorsea
AT dwallace gliderbasedobservationsofcosub2subinthelabradorsea
_version_ 1724349287203078144