A Finite Difference Scheme for Pricing American Put Options under Kou's Jump-Diffusion Model

We present a stable finite difference scheme on a piecewise uniform mesh along with a penalty method for pricing American put options under Kou's jump-diffusion model. By adding a penalty term, the partial integrodifferential complementarity problem arising from pricing American put options und...

Full description

Bibliographic Details
Main Authors: Jian Huang, Zhongdi Cen, Anbo Le
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2013/651573
Description
Summary:We present a stable finite difference scheme on a piecewise uniform mesh along with a penalty method for pricing American put options under Kou's jump-diffusion model. By adding a penalty term, the partial integrodifferential complementarity problem arising from pricing American put options under Kou's jump-diffusion model is transformed into a nonlinear parabolic integro-differential equation. Then a finite difference scheme is proposed to solve the penalized integrodifferential equation, which combines a central difference scheme on a piecewise uniform mesh with respect to the spatial variable with an implicit-explicit time stepping technique. This leads to the solution of problems with a tridiagonal M-matrix. It is proved that the difference scheme satisfies the early exercise constraint. Furthermore, it is proved that the scheme is oscillation-free and is second-order convergent with respect to the spatial variable. The numerical results support the theoretical results.
ISSN:0972-6802
1758-4965