Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment
<p>Carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) emissions from running waters represent a key component of the global carbon cycle. However, quantifying <span class="inline-formula">CO<sub>2</sub></span>...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-02-01
|
Series: | Biogeosciences |
Online Access: | https://bg.copernicus.org/articles/18/1223/2021/bg-18-1223-2021.pdf |
id |
doaj-13521f2ecf5e444f9257af35d5bf5bea |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
F. Vingiani N. Durighetto M. Klaus J. Schelker J. Schelker T. Labasque G. Botter |
spellingShingle |
F. Vingiani N. Durighetto M. Klaus J. Schelker J. Schelker T. Labasque G. Botter Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment Biogeosciences |
author_facet |
F. Vingiani N. Durighetto M. Klaus J. Schelker J. Schelker T. Labasque G. Botter |
author_sort |
F. Vingiani |
title |
Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment |
title_short |
Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment |
title_full |
Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment |
title_fullStr |
Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment |
title_full_unstemmed |
Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment |
title_sort |
evaluating stream co<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experiment |
publisher |
Copernicus Publications |
series |
Biogeosciences |
issn |
1726-4170 1726-4189 |
publishDate |
2021-02-01 |
description |
<p>Carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) emissions from running waters represent a key component of the global carbon cycle. However, quantifying <span class="inline-formula">CO<sub>2</sub></span> fluxes across air–water boundaries remains challenging due to practical difficulties in the estimation of reach-scale standardized gas exchange velocities (<span class="inline-formula"><i>k</i><sub>600</sub></span>) and water equilibrium concentrations. Whereas craft-made floating chambers supplied by internal <span class="inline-formula">CO<sub>2</sub></span> sensors represent a promising technique to estimate <span class="inline-formula">CO<sub>2</sub></span> fluxes from rivers, the existing literature lacks rigorous comparisons among differently designed chambers and deployment techniques. Moreover, as of now the uncertainty of <span class="inline-formula"><i>k</i><sub>600</sub></span> estimates from chamber data has not been evaluated. Here, these issues were addressed by analysing the results of a flume experiment carried out in the Summer of 2019 in the Lunzer:::Rinnen – Experimental Facility (Austria). During the experiment, 100 runs were performed using two different chamber designs (namely, a standard chamber and a flexible foil chamber with an external floating system and a flexible sealing) and two different deployment modes (drifting and anchored). The runs were performed using various combinations of discharge and channel slope, leading to variable turbulent kinetic energy dissipation rates (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup><mo><</mo><mi mathvariant="italic">ε</mi><mo><</mo><mn mathvariant="normal">1</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="122pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5aa18ee2468dab2f30eb1f1e0dfd4c9d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1223-2021-ie00001.svg" width="122pt" height="14pt" src="bg-18-1223-2021-ie00001.png"/></svg:svg></span></span> m<span class="inline-formula"><sup>2</sup></span> s<span class="inline-formula"><sup>−3</sup></span>). Estimates of gas exchange velocities were in line with the existing literature (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4</mn><mo><</mo><msub><mi>k</mi><mn mathvariant="normal">600</mn></msub><mo><</mo><mn mathvariant="normal">32</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="2f960d22be1c15c5badc779e3b52b001"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1223-2021-ie00002.svg" width="65pt" height="12pt" src="bg-18-1223-2021-ie00002.png"/></svg:svg></span></span> m<span class="inline-formula"><sup>2</sup></span> s<span class="inline-formula"><sup>−3</sup></span>), with a general increase in <span class="inline-formula"><i>k</i><sub>600</sub></span> for larger turbulent kinetic energy dissipation rates. The flexible foil chamber gave consistent <span class="inline-formula"><i>k</i><sub>600</sub></span> patterns in response to changes in the slope and/or the flow rate. Moreover, acoustic Doppler velocimeter measurements indicated a limited increase in the turbulence induced by the flexible foil chamber on the flow field (22 % increase in <span class="inline-formula"><i>ε</i></span>, leading to a theoretical 5 % increase in <span class="inline-formula"><i>k</i><sub>600</sub></span>).
The uncertainty in the estimate of gas exchange velocities was then estimated using a generalized likelihood uncertainty estimation (GLUE) procedure. Overall, uncertainty in <span class="inline-formula"><i>k</i><sub>600</sub></span> was moderate to high, with enhanced uncertainty in high-energy set-ups. For the anchored mode, the standard deviations of <span class="inline-formula"><i>k</i><sub>600</sub></span> were between 1.6 and 8.2 m d<span class="inline-formula"><sup>−1</sup></span>, whereas significantly higher values were obtained in drifting mode. Interestingly, for the standard chamber the uncertainty was larger (<span class="inline-formula">+</span> 20 %) as compared to the flexible foil chamber. Our study suggests that a flexible foil design and the anchored deployment might be useful techniques to enhance the robustness and the accuracy of <span class="inline-formula">CO<sub>2</sub></span> measurements in low-order streams. Furthermore, the study demonstrates the value of analytical and numerical tools in the identification of accurate estimations for gas exchange velocities.
These findings have important implications for improving estimates of greenhouse gas emissions and reaeration rates in running waters.</p> |
url |
https://bg.copernicus.org/articles/18/1223/2021/bg-18-1223-2021.pdf |
work_keys_str_mv |
AT fvingiani evaluatingstreamcosub2suboutgassingviadriftingandanchoredfluxchambersinacontrolledflumeexperiment AT ndurighetto evaluatingstreamcosub2suboutgassingviadriftingandanchoredfluxchambersinacontrolledflumeexperiment AT mklaus evaluatingstreamcosub2suboutgassingviadriftingandanchoredfluxchambersinacontrolledflumeexperiment AT jschelker evaluatingstreamcosub2suboutgassingviadriftingandanchoredfluxchambersinacontrolledflumeexperiment AT jschelker evaluatingstreamcosub2suboutgassingviadriftingandanchoredfluxchambersinacontrolledflumeexperiment AT tlabasque evaluatingstreamcosub2suboutgassingviadriftingandanchoredfluxchambersinacontrolledflumeexperiment AT gbotter evaluatingstreamcosub2suboutgassingviadriftingandanchoredfluxchambersinacontrolledflumeexperiment |
_version_ |
1724267752160493568 |
spelling |
doaj-13521f2ecf5e444f9257af35d5bf5bea2021-02-16T11:24:35ZengCopernicus PublicationsBiogeosciences1726-41701726-41892021-02-01181223124010.5194/bg-18-1223-2021Evaluating stream CO<sub>2</sub> outgassing via drifting and anchored flux chambers in a controlled flume experimentF. Vingiani0N. Durighetto1M. Klaus2J. Schelker3J. Schelker4T. Labasque5G. Botter6Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, ItalyDepartment of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, ItalyDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, SwedenDepartment of Limnology and Oceanography, University of Vienna, 1090 Vienna, AustriaWasserCluster Lunz GmbH, 3293 Lunz am See, AustriaGéosciences Rennes, Université de Rennes 1, 35042 Rennes, FranceDepartment of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy<p>Carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) emissions from running waters represent a key component of the global carbon cycle. However, quantifying <span class="inline-formula">CO<sub>2</sub></span> fluxes across air–water boundaries remains challenging due to practical difficulties in the estimation of reach-scale standardized gas exchange velocities (<span class="inline-formula"><i>k</i><sub>600</sub></span>) and water equilibrium concentrations. Whereas craft-made floating chambers supplied by internal <span class="inline-formula">CO<sub>2</sub></span> sensors represent a promising technique to estimate <span class="inline-formula">CO<sub>2</sub></span> fluxes from rivers, the existing literature lacks rigorous comparisons among differently designed chambers and deployment techniques. Moreover, as of now the uncertainty of <span class="inline-formula"><i>k</i><sub>600</sub></span> estimates from chamber data has not been evaluated. Here, these issues were addressed by analysing the results of a flume experiment carried out in the Summer of 2019 in the Lunzer:::Rinnen – Experimental Facility (Austria). During the experiment, 100 runs were performed using two different chamber designs (namely, a standard chamber and a flexible foil chamber with an external floating system and a flexible sealing) and two different deployment modes (drifting and anchored). The runs were performed using various combinations of discharge and channel slope, leading to variable turbulent kinetic energy dissipation rates (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup><mo><</mo><mi mathvariant="italic">ε</mi><mo><</mo><mn mathvariant="normal">1</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="122pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5aa18ee2468dab2f30eb1f1e0dfd4c9d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1223-2021-ie00001.svg" width="122pt" height="14pt" src="bg-18-1223-2021-ie00001.png"/></svg:svg></span></span> m<span class="inline-formula"><sup>2</sup></span> s<span class="inline-formula"><sup>−3</sup></span>). Estimates of gas exchange velocities were in line with the existing literature (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4</mn><mo><</mo><msub><mi>k</mi><mn mathvariant="normal">600</mn></msub><mo><</mo><mn mathvariant="normal">32</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="2f960d22be1c15c5badc779e3b52b001"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1223-2021-ie00002.svg" width="65pt" height="12pt" src="bg-18-1223-2021-ie00002.png"/></svg:svg></span></span> m<span class="inline-formula"><sup>2</sup></span> s<span class="inline-formula"><sup>−3</sup></span>), with a general increase in <span class="inline-formula"><i>k</i><sub>600</sub></span> for larger turbulent kinetic energy dissipation rates. The flexible foil chamber gave consistent <span class="inline-formula"><i>k</i><sub>600</sub></span> patterns in response to changes in the slope and/or the flow rate. Moreover, acoustic Doppler velocimeter measurements indicated a limited increase in the turbulence induced by the flexible foil chamber on the flow field (22 % increase in <span class="inline-formula"><i>ε</i></span>, leading to a theoretical 5 % increase in <span class="inline-formula"><i>k</i><sub>600</sub></span>). The uncertainty in the estimate of gas exchange velocities was then estimated using a generalized likelihood uncertainty estimation (GLUE) procedure. Overall, uncertainty in <span class="inline-formula"><i>k</i><sub>600</sub></span> was moderate to high, with enhanced uncertainty in high-energy set-ups. For the anchored mode, the standard deviations of <span class="inline-formula"><i>k</i><sub>600</sub></span> were between 1.6 and 8.2 m d<span class="inline-formula"><sup>−1</sup></span>, whereas significantly higher values were obtained in drifting mode. Interestingly, for the standard chamber the uncertainty was larger (<span class="inline-formula">+</span> 20 %) as compared to the flexible foil chamber. Our study suggests that a flexible foil design and the anchored deployment might be useful techniques to enhance the robustness and the accuracy of <span class="inline-formula">CO<sub>2</sub></span> measurements in low-order streams. Furthermore, the study demonstrates the value of analytical and numerical tools in the identification of accurate estimations for gas exchange velocities. These findings have important implications for improving estimates of greenhouse gas emissions and reaeration rates in running waters.</p>https://bg.copernicus.org/articles/18/1223/2021/bg-18-1223-2021.pdf |