Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>

Fossil frustules of <i>Ellerbeckia</i> and <i>Melosira</i> were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using non...

Full description

Bibliographic Details
Main Authors: Qiong Li, Jürgen Gluch, Zhongquan Liao, Juliane Posseckardt, André Clausner, Magdalena Łępicka, Małgorzata Grądzka-Dahlke, Ehrenfried Zschech
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/6/1615
id doaj-1347a2a3eef54ab9b65cb8c852d3fa7d
record_format Article
spelling doaj-1347a2a3eef54ab9b65cb8c852d3fa7d2021-07-01T00:40:40ZengMDPI AGNanomaterials2079-49912021-06-01111615161510.3390/nano11061615Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>Qiong Li0Jürgen Gluch1Zhongquan Liao2Juliane Posseckardt3André Clausner4Magdalena Łępicka5Małgorzata Grądzka-Dahlke6Ehrenfried Zschech7Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, GermanyFraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, GermanyFraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, GermanyFraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, GermanyFraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, GermanyInstitute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska Str. 45C, 15-531 Bialystok, PolandInstitute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska Str. 45C, 15-531 Bialystok, PolandFraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, GermanyFossil frustules of <i>Ellerbeckia</i> and <i>Melosira</i> were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that <i>Ellerbeckia</i> is different from <i>Melosira</i>. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.https://www.mdpi.com/2079-4991/11/6/1615diatomfossil frustule3D visualizationX-ray computed tomographymicromechanical behaviormorphology
collection DOAJ
language English
format Article
sources DOAJ
author Qiong Li
Jürgen Gluch
Zhongquan Liao
Juliane Posseckardt
André Clausner
Magdalena Łępicka
Małgorzata Grądzka-Dahlke
Ehrenfried Zschech
spellingShingle Qiong Li
Jürgen Gluch
Zhongquan Liao
Juliane Posseckardt
André Clausner
Magdalena Łępicka
Małgorzata Grądzka-Dahlke
Ehrenfried Zschech
Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>
Nanomaterials
diatom
fossil frustule
3D visualization
X-ray computed tomography
micromechanical behavior
morphology
author_facet Qiong Li
Jürgen Gluch
Zhongquan Liao
Juliane Posseckardt
André Clausner
Magdalena Łępicka
Małgorzata Grądzka-Dahlke
Ehrenfried Zschech
author_sort Qiong Li
title Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>
title_short Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>
title_full Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>
title_fullStr Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>
title_full_unstemmed Morphology and Mechanical Properties of Fossil Diatom Frustules from Genera of <i>Ellerbeckia</i> and <i>Melosira</i>
title_sort morphology and mechanical properties of fossil diatom frustules from genera of <i>ellerbeckia</i> and <i>melosira</i>
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2021-06-01
description Fossil frustules of <i>Ellerbeckia</i> and <i>Melosira</i> were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that <i>Ellerbeckia</i> is different from <i>Melosira</i>. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.
topic diatom
fossil frustule
3D visualization
X-ray computed tomography
micromechanical behavior
morphology
url https://www.mdpi.com/2079-4991/11/6/1615
work_keys_str_mv AT qiongli morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
AT jurgengluch morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
AT zhongquanliao morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
AT julianeposseckardt morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
AT andreclausner morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
AT magdalenałepicka morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
AT małgorzatagradzkadahlke morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
AT ehrenfriedzschech morphologyandmechanicalpropertiesoffossildiatomfrustulesfromgeneraofiellerbeckiaiandimelosirai
_version_ 1721347927645880320