Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.

<h4>Introduction</h4>Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman'...

Full description

Bibliographic Details
Main Authors: Maarten J Vosselman, Guy H E J Vijgen, Boris R M Kingma, Boudewijn Brans, Wouter D van Marken Lichtenbelt
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25014028/?tool=EBI
id doaj-130bfa885fee49febae71a0a5e767487
record_format Article
spelling doaj-130bfa885fee49febae71a0a5e7674872021-06-19T04:55:47ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0197e10165310.1371/journal.pone.0101653Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.Maarten J VosselmanGuy H E J VijgenBoris R M KingmaBoudewijn BransWouter D van Marken Lichtenbelt<h4>Introduction</h4>Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a 'normal' sedentary lifestyle without extreme cold exposures was measured.<h4>Methods</h4>The Iceman (subject A) and his brother (subject B) were studied during mild cold (13°C) and thermoneutral conditions (31°C). Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor.<h4>Results</h4>Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal), within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G). CIT was relatively high (A: 40.1% and B: 41.9%), but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle.<h4>Conclusion</h4>No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the low subject number and the fact that both participants practised the g-Tummo like breathing technique.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25014028/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Maarten J Vosselman
Guy H E J Vijgen
Boris R M Kingma
Boudewijn Brans
Wouter D van Marken Lichtenbelt
spellingShingle Maarten J Vosselman
Guy H E J Vijgen
Boris R M Kingma
Boudewijn Brans
Wouter D van Marken Lichtenbelt
Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.
PLoS ONE
author_facet Maarten J Vosselman
Guy H E J Vijgen
Boris R M Kingma
Boudewijn Brans
Wouter D van Marken Lichtenbelt
author_sort Maarten J Vosselman
title Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.
title_short Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.
title_full Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.
title_fullStr Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.
title_full_unstemmed Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.
title_sort frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description <h4>Introduction</h4>Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a 'normal' sedentary lifestyle without extreme cold exposures was measured.<h4>Methods</h4>The Iceman (subject A) and his brother (subject B) were studied during mild cold (13°C) and thermoneutral conditions (31°C). Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor.<h4>Results</h4>Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal), within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G). CIT was relatively high (A: 40.1% and B: 41.9%), but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle.<h4>Conclusion</h4>No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the low subject number and the fact that both participants practised the g-Tummo like breathing technique.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25014028/?tool=EBI
work_keys_str_mv AT maartenjvosselman frequentextremecoldexposureandbrownfatandcoldinducedthermogenesisastudyinamonozygotictwin
AT guyhejvijgen frequentextremecoldexposureandbrownfatandcoldinducedthermogenesisastudyinamonozygotictwin
AT borisrmkingma frequentextremecoldexposureandbrownfatandcoldinducedthermogenesisastudyinamonozygotictwin
AT boudewijnbrans frequentextremecoldexposureandbrownfatandcoldinducedthermogenesisastudyinamonozygotictwin
AT wouterdvanmarkenlichtenbelt frequentextremecoldexposureandbrownfatandcoldinducedthermogenesisastudyinamonozygotictwin
_version_ 1721371706557202432