Numerical solution of full fractional Duffing equations with Cubic-Quintic-Heptic nonlinearities

In this article, based on the operational matrix of fractional order integration, we introduce a method for the numerical solution of fractional strongly nonlinear Duffing oscillators with cubic-quintic-heptic nonlinear restoring force and then use it in some cases. For this purpose, concerning the...

Full description

Bibliographic Details
Main Authors: P. Pirmohabbati, A. H. Refahi Sheikhani, H. Saberi Najafi, A. Abdolahzadeh Ziabari
Format: Article
Language:English
Published: AIMS Press 2020-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020110/fulltext.html
Description
Summary:In this article, based on the operational matrix of fractional order integration, we introduce a method for the numerical solution of fractional strongly nonlinear Duffing oscillators with cubic-quintic-heptic nonlinear restoring force and then use it in some cases. For this purpose, concerning the Caputo sense, we implement the block-pulse wavelets matrix of fractional order integration. To reach this aim, we analyse the errors. The approach has been examined by some numerical examples and changes in coefficients as well as in the derivative of the equation too. It is shown that this method works well for all the parameters and order of the fractional derivative. Results indicate the precision and computational performance of the suggested algorithm.
ISSN:2473-6988