High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial

A Paleoproterozoic carbon isotope anomaly is likely linked to burial of oceanic cyanobacteria, but it is not clear how burial occurred. Here, the authors find that, under Paleoproterozoic pCO2 conditions, planktonic cyanobacteria increase exopolysaccharide production and mineralization, leading to a...

Full description

Bibliographic Details
Main Authors: Nina A. Kamennaya, Marcin Zemla, Laura Mahoney, Liang Chen, Elizabeth Holman, Hoi-Ying Holman, Manfred Auer, Caroline M. Ajo-Franklin, Christer Jansson
Format: Article
Language:English
Published: Nature Publishing Group 2018-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-018-04588-9
id doaj-12a48d0061384440a9ec3d52699394e9
record_format Article
spelling doaj-12a48d0061384440a9ec3d52699394e92021-05-11T10:02:52ZengNature Publishing GroupNature Communications2041-17232018-05-01911810.1038/s41467-018-04588-9High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burialNina A. Kamennaya0Marcin Zemla1Laura Mahoney2Liang Chen3Elizabeth Holman4Hoi-Ying Holman5Manfred Auer6Caroline M. Ajo-Franklin7Christer Jansson8Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL)Molecular Biophysics and Integrated Bioimaging Sciences Division, LBNLEarth Sciences Division, Lawrence Berkeley National Laboratory (LBNL)Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL)Department of Chemistry, University of CaliforniaEarth Sciences Division, Lawrence Berkeley National Laboratory (LBNL)Molecular Biophysics and Integrated Bioimaging Sciences Division, LBNLThe Molecular Foundry, LBNLEarth Sciences Division, Lawrence Berkeley National Laboratory (LBNL)A Paleoproterozoic carbon isotope anomaly is likely linked to burial of oceanic cyanobacteria, but it is not clear how burial occurred. Here, the authors find that, under Paleoproterozoic pCO2 conditions, planktonic cyanobacteria increase exopolysaccharide production and mineralization, leading to aggregation and faster sinking.https://doi.org/10.1038/s41467-018-04588-9
collection DOAJ
language English
format Article
sources DOAJ
author Nina A. Kamennaya
Marcin Zemla
Laura Mahoney
Liang Chen
Elizabeth Holman
Hoi-Ying Holman
Manfred Auer
Caroline M. Ajo-Franklin
Christer Jansson
spellingShingle Nina A. Kamennaya
Marcin Zemla
Laura Mahoney
Liang Chen
Elizabeth Holman
Hoi-Ying Holman
Manfred Auer
Caroline M. Ajo-Franklin
Christer Jansson
High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial
Nature Communications
author_facet Nina A. Kamennaya
Marcin Zemla
Laura Mahoney
Liang Chen
Elizabeth Holman
Hoi-Ying Holman
Manfred Auer
Caroline M. Ajo-Franklin
Christer Jansson
author_sort Nina A. Kamennaya
title High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial
title_short High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial
title_full High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial
title_fullStr High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial
title_full_unstemmed High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial
title_sort high pco2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain paleoproterozoic carbon burial
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2018-05-01
description A Paleoproterozoic carbon isotope anomaly is likely linked to burial of oceanic cyanobacteria, but it is not clear how burial occurred. Here, the authors find that, under Paleoproterozoic pCO2 conditions, planktonic cyanobacteria increase exopolysaccharide production and mineralization, leading to aggregation and faster sinking.
url https://doi.org/10.1038/s41467-018-04588-9
work_keys_str_mv AT ninaakamennaya highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT marcinzemla highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT lauramahoney highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT liangchen highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT elizabethholman highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT hoiyingholman highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT manfredauer highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT carolinemajofranklin highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
AT christerjansson highpco2inducedexopolysacchariderichballastedaggregatesofplanktoniccyanobacteriacouldexplainpaleoproterozoiccarbonburial
_version_ 1721448795963654144