SiC-Based High Efficiency High Isolation Dual Active Bridge Converter for a Power Electronic Transformer

This paper discusses the benefits of using silicon carbide (SiC) devices in a three-stage modular power electronic transformer. According to the requirements to be fulfilled by each stage, the second one (the DC/DC isolation converter) presents the most estimable improvements to be gained from the u...

Full description

Bibliographic Details
Main Authors: Mariam Saeed, María R. Rogina, Alberto Rodríguez, Manuel Arias, Fernando Briz
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/5/1198
Description
Summary:This paper discusses the benefits of using silicon carbide (SiC) devices in a three-stage modular power electronic transformer. According to the requirements to be fulfilled by each stage, the second one (the DC/DC isolation converter) presents the most estimable improvements to be gained from the use of SiC devices. Therefore, this paper is focused on this second stage, implemented with a SiC-based dual active bridge. Selection of the SiC devices is detailed tackling the efficiency improvement which can be obtained when they are co-packed with SiC antiparallel Schottky diodes in addition to their intrinsic body diode. This efficiency improvement is dependent on the dual active bridge operation point. Hence, a simple device loss model is presented to assess the efficiency improvement and understand the reasons for this dependence. Experimental results from a 5-kW Dual Active Bridge prototype have been obtained to validate the model. The dual active bridge converter is also tested as part of the full PET module operating at rated power.
ISSN:1996-1073