Knockdown of Pnpla6 protein results in motor neuron defects in zebrafish

SUMMARY Mutations in patatin-like phospholipase domain containing 6 (PNPLA6), also known as neuropathy target esterase (NTE) or SPG39, cause hereditary spastic paraplegia (HSP). Although studies on animal models, including mice and Drosophila, have extended our understanding of PNPLA6, its roles in...

Full description

Bibliographic Details
Main Authors: Yang Song, Molin Wang, Fei Mao, Ming Shao, Baochang Zhao, Zhen Song, Changshun Shao, Yaoqin Gong
Format: Article
Language:English
Published: The Company of Biologists 2013-03-01
Series:Disease Models & Mechanisms
Online Access:http://dmm.biologists.org/content/6/2/404
Description
Summary:SUMMARY Mutations in patatin-like phospholipase domain containing 6 (PNPLA6), also known as neuropathy target esterase (NTE) or SPG39, cause hereditary spastic paraplegia (HSP). Although studies on animal models, including mice and Drosophila, have extended our understanding of PNPLA6, its roles in neural development and in HSP are not clearly understood. Here, we describe the generation of a vertebrate model of PNPLA6 insufficiency using morpholino oligonucleotide knockdown in zebrafish (Danio rerio). Pnpla6 knockdown resulted in developmental abnormalities and motor neuron defects, including axon truncation and branching. The phenotypes in pnpla6 knockdown morphants were rescued by the introduction of wild-type, but not mutant, human PNPLA6 mRNA. Our results also revealed the involvement of BMP signaling in pnpla6 knockdown phenotypes. Taken together, these results demonstrate an important role of PNPLA6 in motor neuron development and implicate overexpression of BMP signaling as a possible mechanism underlying the developmental defects in pnpla6 morphants.
ISSN:1754-8403
1754-8411