SPATIO-TEMPORAL CHARACTERISTICS OF RESIDENT TRIP BASED ON POI AND OD DATA OF FLOAT CAR IN BEIJING

Due to the influence of the urban inherent regional functional distribution, the daily activities of the residents presented some spatio-temporal patterns (periodic patterns, gathering patterns, etc.). In order to further understand the spatial and temporal characteristics of urban residents, this...

Full description

Bibliographic Details
Main Authors: N. Mou, J. Li, L. Zhang, W. Liu, Y. Xu
Format: Article
Language:English
Published: Copernicus Publications 2017-09-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W7/99/2017/isprs-archives-XLII-2-W7-99-2017.pdf
Description
Summary:Due to the influence of the urban inherent regional functional distribution, the daily activities of the residents presented some spatio-temporal patterns (periodic patterns, gathering patterns, etc.). In order to further understand the spatial and temporal characteristics of urban residents, this paper research takes the taxi trajectory data of Beijing as a sample data and studies the spatio-temporal characteristics of the residents' activities on the weekdays. At first, according to the characteristics of the taxi trajectory data distributed along the road network, it takes the Voronoi generated by the road nodes as the research unit. This paper proposes a hybrid clustering method – based on grid density, which is used to cluster the OD (origin and destination) data of taxi at different times. Then,combining with the POI data of Beijing, this research calculated the density of the POI data in the clustering results, and analyzed the relationship between the activities of residents in different periods and the functional types of the region. The final results showed that the residents were mainly commuting on weekdays. And it found that the distribution of travel density showed a concentric circle of the characteristics, focusing on residential areas and work areas. The results of cluster analysis and POI analysis showed that the residents' travel had experienced the process of "spatial relative dispersion – spatial aggregation – spatial relative dispersion" in one day.
ISSN:1682-1750
2194-9034