Cascade Control of Grid-Connected PV Systems Using TLBO-Based Fractional-Order PID
Cascade control is one of the most efficient systems for improving the performance of the conventional single-loop control, especially in the case of disturbances. Usually, controller parameters in the inner and the outer loops are identified in a strict sequence. This paper presents a novel cascade...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2019/4325648 |
Summary: | Cascade control is one of the most efficient systems for improving the performance of the conventional single-loop control, especially in the case of disturbances. Usually, controller parameters in the inner and the outer loops are identified in a strict sequence. This paper presents a novel cascade control strategy for grid-connected photovoltaic (PV) systems based on fractional-order PID (FOPID). Here, simultaneous tuning of the inner and the outer loop controllers is proposed. Teaching-learning-based optimization (TLBO) algorithm is employed to optimize the parameters of the FOPID controller. The superiority of the proposed TLBO-based FOPID controller has been demonstrated by comparing the results with recently published optimization techniques such as genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO). Simulations are conducted using MATLAB/Simulink software under different operating conditions for the purpose of verifying the effectiveness of the proposed control strategy. Results show that the performance of the proposed approach provides better dynamic responses and it outperforms the other control techniques. |
---|---|
ISSN: | 1110-662X 1687-529X |