New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis

Abstract Background Barley (Hordeum vulgare L.) is one of the most important cereals worldwide. Although this crop is drought-tolerant, water deficiency negatively affects its growth and production. To detect key genes involved in drought tolerance in barley, a reconstruction of the related gene net...

Full description

Bibliographic Details
Main Authors: Seyedeh Mehri Javadi, Zahra-Sadat Shobbar, Asa Ebrahimi, Maryam Shahbazi
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:Journal of Genetic Engineering and Biotechnology
Subjects:
Online Access:https://doi.org/10.1186/s43141-020-00104-z
id doaj-1265417b47fe43d08a21af8ce3fa1e89
record_format Article
spelling doaj-1265417b47fe43d08a21af8ce3fa1e892021-01-10T12:56:29ZengSpringerOpenJournal of Genetic Engineering and Biotechnology2090-59202021-01-0119111210.1186/s43141-020-00104-zNew insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysisSeyedeh Mehri Javadi0Zahra-Sadat Shobbar1Asa Ebrahimi2Maryam Shahbazi3Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad UniversityDepartment of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO)Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad UniversityGorgan University of Agricultural Sciences and Natural ResourcesAbstract Background Barley (Hordeum vulgare L.) is one of the most important cereals worldwide. Although this crop is drought-tolerant, water deficiency negatively affects its growth and production. To detect key genes involved in drought tolerance in barley, a reconstruction of the related gene network and discovery of the hub genes would help. Here, drought-responsive genes in barley were collected through analysis of the available microarray datasets (− 5 ≥ Fold change ≥ 5, adjusted p value ≤ 0.05). Protein-protein interaction (PPI) networks were reconstructed. Results The hub genes were identified by Cytoscape software using three Cyto-hubba algorithms (Degree, Closeness, and MNC), leading to the identification of 17 and 16 non-redundant genes at vegetative and reproductive stages, respectively. These genes consist of some transcription factors such as HvVp1, HvERF4, HvFUS3, HvCBF6, DRF1.3, HvNAC6, HvCO5, and HvWRKY42, which belong to AP2, NAC, Zinc-finger, and WRKY families. In addition, the expression pattern of four hub genes was compared between the two studied cultivars, i.e., “Yousef” (drought-tolerant) and “Morocco” (susceptible). The results of real-time PCR revealed that the expression patterns corresponded well with those determined by the microarray. Also, promoter analysis revealed that some TF families, including AP2, NAC, Trihelix, MYB, and one modular (composed of two HD-ZIP TFs), had a binding site in 85% of promoters of the drought-responsive genes and of the hub genes in barley. Conclusions The identified hub genes, especially those from AP2 and NAC families, might be among key TFs that regulate drought-stress response in barley and are suggested as promising candidate genes for further functional analysis.https://doi.org/10.1186/s43141-020-00104-zBarleyDrought stressBiological networksHub genePromoter analysis
collection DOAJ
language English
format Article
sources DOAJ
author Seyedeh Mehri Javadi
Zahra-Sadat Shobbar
Asa Ebrahimi
Maryam Shahbazi
spellingShingle Seyedeh Mehri Javadi
Zahra-Sadat Shobbar
Asa Ebrahimi
Maryam Shahbazi
New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis
Journal of Genetic Engineering and Biotechnology
Barley
Drought stress
Biological networks
Hub gene
Promoter analysis
author_facet Seyedeh Mehri Javadi
Zahra-Sadat Shobbar
Asa Ebrahimi
Maryam Shahbazi
author_sort Seyedeh Mehri Javadi
title New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis
title_short New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis
title_full New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis
title_fullStr New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis
title_full_unstemmed New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis
title_sort new insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis
publisher SpringerOpen
series Journal of Genetic Engineering and Biotechnology
issn 2090-5920
publishDate 2021-01-01
description Abstract Background Barley (Hordeum vulgare L.) is one of the most important cereals worldwide. Although this crop is drought-tolerant, water deficiency negatively affects its growth and production. To detect key genes involved in drought tolerance in barley, a reconstruction of the related gene network and discovery of the hub genes would help. Here, drought-responsive genes in barley were collected through analysis of the available microarray datasets (− 5 ≥ Fold change ≥ 5, adjusted p value ≤ 0.05). Protein-protein interaction (PPI) networks were reconstructed. Results The hub genes were identified by Cytoscape software using three Cyto-hubba algorithms (Degree, Closeness, and MNC), leading to the identification of 17 and 16 non-redundant genes at vegetative and reproductive stages, respectively. These genes consist of some transcription factors such as HvVp1, HvERF4, HvFUS3, HvCBF6, DRF1.3, HvNAC6, HvCO5, and HvWRKY42, which belong to AP2, NAC, Zinc-finger, and WRKY families. In addition, the expression pattern of four hub genes was compared between the two studied cultivars, i.e., “Yousef” (drought-tolerant) and “Morocco” (susceptible). The results of real-time PCR revealed that the expression patterns corresponded well with those determined by the microarray. Also, promoter analysis revealed that some TF families, including AP2, NAC, Trihelix, MYB, and one modular (composed of two HD-ZIP TFs), had a binding site in 85% of promoters of the drought-responsive genes and of the hub genes in barley. Conclusions The identified hub genes, especially those from AP2 and NAC families, might be among key TFs that regulate drought-stress response in barley and are suggested as promising candidate genes for further functional analysis.
topic Barley
Drought stress
Biological networks
Hub gene
Promoter analysis
url https://doi.org/10.1186/s43141-020-00104-z
work_keys_str_mv AT seyedehmehrijavadi newinsightsonkeygenesinvolvedindroughtstressresponseofbarleygenenetworksreconstructionhubandpromoteranalysis
AT zahrasadatshobbar newinsightsonkeygenesinvolvedindroughtstressresponseofbarleygenenetworksreconstructionhubandpromoteranalysis
AT asaebrahimi newinsightsonkeygenesinvolvedindroughtstressresponseofbarleygenenetworksreconstructionhubandpromoteranalysis
AT maryamshahbazi newinsightsonkeygenesinvolvedindroughtstressresponseofbarleygenenetworksreconstructionhubandpromoteranalysis
_version_ 1724342057458204672