Impacts of pore size distribution on gas injection in intraformational water zones in oil sands reservoirs
Intraformational water zones are widely reported in Canadian oil sands fields. In order to pressurize a thief zone, one of the initiatives is to inject gas. However, the evaluation of gas injectivity based on a pore size distribution is still a big challenge. This study provides a multi-scale approa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | Oil & Gas Science and Technology |
Online Access: | https://ogst.ifpenergiesnouvelles.fr/articles/ogst/full_html/2020/01/ogst200033/ogst200033.html |
Summary: | Intraformational water zones are widely reported in Canadian oil sands fields. In order to pressurize a thief zone, one of the initiatives is to inject gas. However, the evaluation of gas injectivity based on a pore size distribution is still a big challenge. This study provides a multi-scale approach to study the effect of a pore size distribution on gas injectivity in intraformational water zones. The results indicate the gas effective permeability increases in a less complex and more discrete pore network. The enhancement of gas effective permeability with increased gas saturation weakens with higher complexity and lower discreteness of a pore network. A less complex and more discrete pore network better benefits the gas injectivity index. |
---|---|
ISSN: | 1294-4475 1953-8189 |