Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

Aerosol–cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation...

Full description

Bibliographic Details
Main Authors: J. Schmale, S. Henning, S. Decesari, B. Henzing, H. Keskinen, K. Sellegri, J. Ovadnevaite, M. L. Pöhlker, J. Brito, A. Bougiatioti, A. Kristensson, N. Kalivitis, I. Stavroulas, S. Carbone, A. Jefferson, M. Park, P. Schlag, Y. Iwamoto, P. Aalto, M. Äijälä, N. Bukowiecki, M. Ehn, G. Frank, R. Fröhlich, A. Frumau, E. Herrmann, H. Herrmann, R. Holzinger, G. Kos, M. Kulmala, N. Mihalopoulos, A. Nenes, C. O'Dowd, T. Petäjä, D. Picard, C. Pöhlker, U. Pöschl, L. Poulain, A. S. H. Prévôt, E. Swietlicki, M. O. Andreae, P. Artaxo, A. Wiedensohler, J. Ogren, A. Matsuki, S. S. Yum, F. Stratmann, U. Baltensperger, M. Gysel
Format: Article
Language:English
Published: Copernicus Publications 2018-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/2853/2018/acp-18-2853-2018.pdf
id doaj-1251501776c44c42938719f834cfebdc
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. Schmale
S. Henning
S. Decesari
B. Henzing
H. Keskinen
H. Keskinen
K. Sellegri
J. Ovadnevaite
M. L. Pöhlker
J. Brito
J. Brito
A. Bougiatioti
A. Kristensson
N. Kalivitis
I. Stavroulas
S. Carbone
A. Jefferson
M. Park
P. Schlag
P. Schlag
Y. Iwamoto
Y. Iwamoto
P. Aalto
M. Äijälä
N. Bukowiecki
M. Ehn
G. Frank
R. Fröhlich
A. Frumau
E. Herrmann
H. Herrmann
R. Holzinger
G. Kos
M. Kulmala
N. Mihalopoulos
N. Mihalopoulos
A. Nenes
A. Nenes
A. Nenes
C. O'Dowd
T. Petäjä
D. Picard
C. Pöhlker
U. Pöschl
L. Poulain
A. S. H. Prévôt
E. Swietlicki
M. O. Andreae
P. Artaxo
A. Wiedensohler
J. Ogren
A. Matsuki
S. S. Yum
F. Stratmann
U. Baltensperger
M. Gysel
spellingShingle J. Schmale
S. Henning
S. Decesari
B. Henzing
H. Keskinen
H. Keskinen
K. Sellegri
J. Ovadnevaite
M. L. Pöhlker
J. Brito
J. Brito
A. Bougiatioti
A. Kristensson
N. Kalivitis
I. Stavroulas
S. Carbone
A. Jefferson
M. Park
P. Schlag
P. Schlag
Y. Iwamoto
Y. Iwamoto
P. Aalto
M. Äijälä
N. Bukowiecki
M. Ehn
G. Frank
R. Fröhlich
A. Frumau
E. Herrmann
H. Herrmann
R. Holzinger
G. Kos
M. Kulmala
N. Mihalopoulos
N. Mihalopoulos
A. Nenes
A. Nenes
A. Nenes
C. O'Dowd
T. Petäjä
D. Picard
C. Pöhlker
U. Pöschl
L. Poulain
A. S. H. Prévôt
E. Swietlicki
M. O. Andreae
P. Artaxo
A. Wiedensohler
J. Ogren
A. Matsuki
S. S. Yum
F. Stratmann
U. Baltensperger
M. Gysel
Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
Atmospheric Chemistry and Physics
author_facet J. Schmale
S. Henning
S. Decesari
B. Henzing
H. Keskinen
H. Keskinen
K. Sellegri
J. Ovadnevaite
M. L. Pöhlker
J. Brito
J. Brito
A. Bougiatioti
A. Kristensson
N. Kalivitis
I. Stavroulas
S. Carbone
A. Jefferson
M. Park
P. Schlag
P. Schlag
Y. Iwamoto
Y. Iwamoto
P. Aalto
M. Äijälä
N. Bukowiecki
M. Ehn
G. Frank
R. Fröhlich
A. Frumau
E. Herrmann
H. Herrmann
R. Holzinger
G. Kos
M. Kulmala
N. Mihalopoulos
N. Mihalopoulos
A. Nenes
A. Nenes
A. Nenes
C. O'Dowd
T. Petäjä
D. Picard
C. Pöhlker
U. Pöschl
L. Poulain
A. S. H. Prévôt
E. Swietlicki
M. O. Andreae
P. Artaxo
A. Wiedensohler
J. Ogren
A. Matsuki
S. S. Yum
F. Stratmann
U. Baltensperger
M. Gysel
author_sort J. Schmale
title Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
title_short Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
title_full Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
title_fullStr Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
title_full_unstemmed Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
title_sort long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2018-02-01
description Aerosol–cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set – ready to be used for model validation – of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles  &gt;&thinsp;20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. <br><br> Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. <br><br> The average hygroscopicity parameter, <i>κ</i>, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2–0.3). We performed closure studies based on <i>κ</i>–Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of <i>κ</i>. The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. <br><br> Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating <q>migrating-CCNCs</q> to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
url https://www.atmos-chem-phys.net/18/2853/2018/acp-18-2853-2018.pdf
work_keys_str_mv AT jschmale longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT shenning longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT sdecesari longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT bhenzing longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT hkeskinen longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT hkeskinen longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT ksellegri longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT jovadnevaite longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT mlpohlker longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT jbrito longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT jbrito longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT abougiatioti longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT akristensson longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT nkalivitis longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT istavroulas longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT scarbone longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT ajefferson longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT mpark longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT pschlag longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT pschlag longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT yiwamoto longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT yiwamoto longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT paalto longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT maijala longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT nbukowiecki longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT mehn longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT gfrank longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT rfrohlich longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT afrumau longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT eherrmann longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT hherrmann longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT rholzinger longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT gkos longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT mkulmala longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT nmihalopoulos longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT nmihalopoulos longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT anenes longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT anenes longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT anenes longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT codowd longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT tpetaja longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT dpicard longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT cpohlker longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT uposchl longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT lpoulain longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT ashprevot longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT eswietlicki longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT moandreae longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT partaxo longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT awiedensohler longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT jogren longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT amatsuki longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT ssyum longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT fstratmann longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT ubaltensperger longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
AT mgysel longtermcloudcondensationnucleinumberconcentrationparticlenumbersizedistributionandchemicalcompositionmeasurementsatregionallyrepresentativeobservatories
_version_ 1725015949177782272
spelling doaj-1251501776c44c42938719f834cfebdc2020-11-25T01:47:09ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-02-01182853288110.5194/acp-18-2853-2018Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatoriesJ. Schmale0S. Henning1S. Decesari2B. Henzing3H. Keskinen4H. Keskinen5K. Sellegri6J. Ovadnevaite7M. L. Pöhlker8J. Brito9J. Brito10A. Bougiatioti11A. Kristensson12N. Kalivitis13I. Stavroulas14S. Carbone15A. Jefferson16M. Park17P. Schlag18P. Schlag19Y. Iwamoto20Y. Iwamoto21P. Aalto22M. Äijälä23N. Bukowiecki24M. Ehn25G. Frank26R. Fröhlich27A. Frumau28E. Herrmann29H. Herrmann30R. Holzinger31G. Kos32M. Kulmala33N. Mihalopoulos34N. Mihalopoulos35A. Nenes36A. Nenes37A. Nenes38C. O'Dowd39T. Petäjä40D. Picard41C. Pöhlker42U. Pöschl43L. Poulain44A. S. H. Prévôt45E. Swietlicki46M. O. Andreae47P. Artaxo48A. Wiedensohler49J. Ogren50A. Matsuki51S. S. Yum52F. Stratmann53U. Baltensperger54M. Gysel55Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLeibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, GermanyInstitute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Piero Gobetti, 101, 40129 Bologna, ItalyNetherlands Organisation for Applied Scientific Research, Princetonlaan 6, 3584 Utrecht, the NetherlandsFaculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, FinlandHyytiälä Forestry Field Station, Hyytiäläntie 124, Korkeakoski, FinlandLaboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, 63000 Clermont-Ferrand, FranceSchool of Physics and CCAPS, National University of Ireland Galway, University Road, Galway, IrelandMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyLaboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, 63000 Clermont-Ferrand, FranceInstituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, BrazilDepartment of Chemistry, University of Crete, Voutes, 71003 Heraklion, GreeceDepartment of Physics, Lund University, 221 00 Lund, SwedenDepartment of Chemistry, University of Crete, Voutes, 71003 Heraklion, GreeceDepartment of Chemistry, University of Crete, Voutes, 71003 Heraklion, GreeceInstituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, BrazilEarth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305, USADepartment of Atmospheric Science, Yonsei University, Seoul, South KoreaInstitute for Marine and Atmospheric Research, University of Utrecht, Utrecht, the NetherlandsInstitute for Energy and Climate Research (IEK-8): Troposphere, Forschungszentrum Jülich, Jülich, GermanyInstitute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, JapanGraduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima 739-8528, JapanFaculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, FinlandFaculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, FinlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandFaculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, FinlandDepartment of Physics, Lund University, 221 00 Lund, SwedenLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandEnergy Research Centre of the Netherlands, Petten, the NetherlandsLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLeibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, GermanyInstitute for Marine and Atmospheric Research, University of Utrecht, Utrecht, the NetherlandsEnergy Research Centre of the Netherlands, Petten, the NetherlandsFaculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, FinlandDepartment of Chemistry, University of Crete, Voutes, 71003 Heraklion, GreeceNational Observatory of Athens, P. Penteli 15236, Athens, GreeceNational Observatory of Athens, P. Penteli 15236, Athens, GreeceSchool of Chemical & Biomolecular Engineering and School of Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0340, USAFoundation for Research and Technology – Hellas, Patras, 26504, GreeceSchool of Physics and CCAPS, National University of Ireland Galway, University Road, Galway, IrelandFaculty of Science, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, FinlandLaboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, 63000 Clermont-Ferrand, FranceMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyLeibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, GermanyLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDepartment of Physics, Lund University, 221 00 Lund, SwedenMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyInstituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, BrazilLeibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, GermanyEarth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305, USAInstitute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, JapanDepartment of Atmospheric Science, Yonsei University, Seoul, South KoreaLeibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, GermanyLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandAerosol–cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set – ready to be used for model validation – of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles  &gt;&thinsp;20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. <br><br> Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. <br><br> The average hygroscopicity parameter, <i>κ</i>, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2–0.3). We performed closure studies based on <i>κ</i>–Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of <i>κ</i>. The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. <br><br> Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating <q>migrating-CCNCs</q> to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.https://www.atmos-chem-phys.net/18/2853/2018/acp-18-2853-2018.pdf