Modeling Data Flows with Network Calculus in Cyber-Physical Systems: Enabling Feature Analysis for Anomaly Detection Applications

The electric grid is becoming increasingly cyber-physical with the addition of smart technologies, new communication interfaces, and automated grid-support functions. Because of this, it is no longer sufficient to only study the physical system dynamics, but the cyber system must also be monitored a...

Full description

Bibliographic Details
Main Authors: Nicholas Jacobs, Shamina Hossain-McKenzie, Adam Summers
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/12/6/255
Description
Summary:The electric grid is becoming increasingly cyber-physical with the addition of smart technologies, new communication interfaces, and automated grid-support functions. Because of this, it is no longer sufficient to only study the physical system dynamics, but the cyber system must also be monitored as well to examine cyber-physical interactions and effects on the overall system. To address this gap for both operational and security needs, cyber-physical situational awareness is needed to monitor the system to detect any faults or malicious activity. Techniques and models to understand the physical system (the power system operation) exist, but methods to study the cyber system are needed, which can assist in understanding how the network traffic and changes to network conditions affect applications such as data analysis, intrusion detection systems (IDS), and anomaly detection. In this paper, we examine and develop models of data flows in communication networks of cyber-physical systems (CPSs) and explore how network calculus can be utilized to develop those models for CPSs, with a focus on anomaly and intrusion detection. This provides a foundation for methods to examine how changes to behavior in the CPS can be modeled and for investigating cyber effects in CPSs in anomaly detection applications.
ISSN:2078-2489