Bound Water Content and Pore Size Distribution in Swollen Cell Walls Determined by NMR Technology

Nuclear magnetic resonance (NMR) relaxation time distributions can provide detailed information about the moisture in wood. In this paper, the bound water content and pore size distributions in swollen cell wall of two kinds of softwoods (Pinus sylvestris and Cunninghamia lanceolata) and three kinds...

Full description

Bibliographic Details
Main Authors: Xin Gao, Shouzeng Zhuang, Juwan Jin, Pingxiang Cao
Format: Article
Language:English
Published: North Carolina State University 2015-10-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_4_8208_Gao_Bound_Water_Content_Pore_Size_Distribution
Description
Summary:Nuclear magnetic resonance (NMR) relaxation time distributions can provide detailed information about the moisture in wood. In this paper, the bound water content and pore size distributions in swollen cell wall of two kinds of softwoods (Pinus sylvestris and Cunninghamia lanceolata) and three kinds of hardwoods (Populus sp., Fraxinus excelsior L., and Ochroma lagopus) were determined by NMR cryoporometry. The total bound water content of swollen cell wall almost exceeds 35%, based on dry mass, which is obviously higher than the fiber saturation point (FSP) (appr. 30%) measured by the extrapolation method. The bound water content of different species is consistent with the hypothesis that with the decrease of basic density, the more bound water could be contained in wood. The proportion of the pore diameter smaller than 1.59 nm is higher than 70%, and the proportion of the pore diameter larger than 4 nm is no more than 10%.
ISSN:1930-2126
1930-2126