Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature
Abstract Background The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include severa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-06-01
|
Series: | Frontiers in Zoology |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12983-017-0216-y |
id |
doaj-121eb71995934b28a9eed83f714f8cd2 |
---|---|
record_format |
Article |
spelling |
doaj-121eb71995934b28a9eed83f714f8cd22020-11-24T21:42:09ZengBMCFrontiers in Zoology1742-99942017-06-0114111710.1186/s12983-017-0216-yMuscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculatureJanine M. Ziermann0Renata Freitas1Rui Diogo2Department of Anatomy, Howard University College of MedicineIBMC—Institute for Molecular and Cell BiologyDepartment of Anatomy, Howard University College of MedicineAbstract Background The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include several aspects of their musculature. Therefore, myogenic studies on sharks are essential in yielding clues on the developmental processes involved in the origin of the muscular anatomy. Results Here we provide a detailed description of the development of specific muscular units integrating the cephalic and appendicular musculature of the shark model, Scyliorhinus canicula. In addition, we analyze the muscle development across gnathostomes by comparing the developmental onset of muscle groups in distinct taxa. Our data reveal that appendicular myogenesis occurs earlier in the pectoral than in the pelvic appendages. Additionally, the pectoral musculature includes muscles that have their primordial developmental origin in the head. This culminates in a tight muscular connection between the pectoral girdle and the cranium, which founds no parallel in the pelvic fins. Moreover, we identified a lateral to ventral pattern of formation of the cephalic muscles, that has been equally documented in osteichthyans but, in contrast with these gnathostomes, the hyoid muscles develop earlier than mandibular muscle in S. canicula. Conclusion Our analyses reveal considerable differences in the formation of the pectoral and pelvic musculatures in S. canicula, reinforcing the idea that head tissues have contributed to the formation of the pectoral appendages in the common ancestor of extant gnathostomes. In addition, temporal differences in the formation of some cranial muscles between chondrichthyans and osteichthyans might support the hypothesis that the similarity between the musculature of the mandibular arch and of the other pharyngeal arches represents a derived feature of jawed vertebrates.http://link.springer.com/article/10.1186/s12983-017-0216-yMusclesCranialCucullarisHeadPectoralPelvic |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Janine M. Ziermann Renata Freitas Rui Diogo |
spellingShingle |
Janine M. Ziermann Renata Freitas Rui Diogo Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature Frontiers in Zoology Muscles Cranial Cucullaris Head Pectoral Pelvic |
author_facet |
Janine M. Ziermann Renata Freitas Rui Diogo |
author_sort |
Janine M. Ziermann |
title |
Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature |
title_short |
Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature |
title_full |
Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature |
title_fullStr |
Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature |
title_full_unstemmed |
Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature |
title_sort |
muscle development in the shark scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature |
publisher |
BMC |
series |
Frontiers in Zoology |
issn |
1742-9994 |
publishDate |
2017-06-01 |
description |
Abstract Background The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include several aspects of their musculature. Therefore, myogenic studies on sharks are essential in yielding clues on the developmental processes involved in the origin of the muscular anatomy. Results Here we provide a detailed description of the development of specific muscular units integrating the cephalic and appendicular musculature of the shark model, Scyliorhinus canicula. In addition, we analyze the muscle development across gnathostomes by comparing the developmental onset of muscle groups in distinct taxa. Our data reveal that appendicular myogenesis occurs earlier in the pectoral than in the pelvic appendages. Additionally, the pectoral musculature includes muscles that have their primordial developmental origin in the head. This culminates in a tight muscular connection between the pectoral girdle and the cranium, which founds no parallel in the pelvic fins. Moreover, we identified a lateral to ventral pattern of formation of the cephalic muscles, that has been equally documented in osteichthyans but, in contrast with these gnathostomes, the hyoid muscles develop earlier than mandibular muscle in S. canicula. Conclusion Our analyses reveal considerable differences in the formation of the pectoral and pelvic musculatures in S. canicula, reinforcing the idea that head tissues have contributed to the formation of the pectoral appendages in the common ancestor of extant gnathostomes. In addition, temporal differences in the formation of some cranial muscles between chondrichthyans and osteichthyans might support the hypothesis that the similarity between the musculature of the mandibular arch and of the other pharyngeal arches represents a derived feature of jawed vertebrates. |
topic |
Muscles Cranial Cucullaris Head Pectoral Pelvic |
url |
http://link.springer.com/article/10.1186/s12983-017-0216-y |
work_keys_str_mv |
AT janinemziermann muscledevelopmentinthesharkscyliorhinuscaniculaimplicationsfortheevolutionofthegnathostomeheadandpairedappendagemusculature AT renatafreitas muscledevelopmentinthesharkscyliorhinuscaniculaimplicationsfortheevolutionofthegnathostomeheadandpairedappendagemusculature AT ruidiogo muscledevelopmentinthesharkscyliorhinuscaniculaimplicationsfortheevolutionofthegnathostomeheadandpairedappendagemusculature |
_version_ |
1725918665365258240 |