Real-Time Automatic Colour Calibration for NAO Humanoids

A challenge in NAO soccer robots is colour calibration. Good colour calibration can result in robust and accurate self-localization of the robot. Currently manual calibration is the only solution, which is used. In this paper, we are proposing an automatic real-time, accurate YUV colour space based...

Full description

Bibliographic Details
Main Authors: Anastasia Bolotnikova, Gholamreza Anbarjafari
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2018-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/300916
Description
Summary:A challenge in NAO soccer robots is colour calibration. Good colour calibration can result in robust and accurate self-localization of the robot. Currently manual calibration is the only solution, which is used. In this paper, we are proposing an automatic real-time, accurate YUV colour space based colour calibration technique. In order to define average values for the desired colour classes namely orange, white, green and purple, a specified set of frames from the NAO camera are analysed. These average values are corrected by luminance analysis of a new frame and are passed to the K-means clustering algorithm as a set of initial means. In addition to these four values, a set of initial means of the K-means algorithm contains 16 values that are calculated in the following manner: the frame being processed is divided into 4 by 4 grids and the average value from every grid serves as an initial mean for K-means clustering. Consequently, colours of a similar type are combined into clusters. The final step of the proposed technique is cluster classification in which the average values of the desired colour classes are corrected by luminance analysis. As NAO cameras provide video streams in YUV format and the proposed algorithm uses this format there is no need for additional computational steps for conversation between the colour spaces. As a result, computational process is reduced compared to current techniques.
ISSN:1330-3651
1848-6339