Novel hardware and concepts for unconventional computing
Abstract Neuromorphic systems are currently experiencing a rapid upswing due to the fact that today's CMOS (complementary metal oxide silicon) based technologies are increasingly approaching their limits. In particular, for the area of machine learning, energy consumption of today's electr...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-07-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-020-68834-1 |
id |
doaj-11fcfe0dbd154c3c9ecbdf59720bcfbc |
---|---|
record_format |
Article |
spelling |
doaj-11fcfe0dbd154c3c9ecbdf59720bcfbc2021-07-18T11:20:44ZengNature Publishing GroupScientific Reports2045-23222020-07-011011310.1038/s41598-020-68834-1Novel hardware and concepts for unconventional computingMartin Ziegler0Department of Microelectronic and Nanoelectronic Systems, TU IlmenauAbstract Neuromorphic systems are currently experiencing a rapid upswing due to the fact that today's CMOS (complementary metal oxide silicon) based technologies are increasingly approaching their limits. In particular, for the area of machine learning, energy consumption of today's electronics is an important limitation, that also contributes toward the ever-increasing impact of digitalization on our climate. Thus, in order to better meet the special requirements of unconventional computing, new physical substrates for bio-inspired computing schemes are extensively exploited. The aim of this Guest Edited Collection is to provide a platform for interdisciplinary research along three main lines: memristive materials and devices, emulation of cellular learning (neurons and synapses), and unconventional computing and network schemes.https://doi.org/10.1038/s41598-020-68834-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Martin Ziegler |
spellingShingle |
Martin Ziegler Novel hardware and concepts for unconventional computing Scientific Reports |
author_facet |
Martin Ziegler |
author_sort |
Martin Ziegler |
title |
Novel hardware and concepts for unconventional computing |
title_short |
Novel hardware and concepts for unconventional computing |
title_full |
Novel hardware and concepts for unconventional computing |
title_fullStr |
Novel hardware and concepts for unconventional computing |
title_full_unstemmed |
Novel hardware and concepts for unconventional computing |
title_sort |
novel hardware and concepts for unconventional computing |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2020-07-01 |
description |
Abstract Neuromorphic systems are currently experiencing a rapid upswing due to the fact that today's CMOS (complementary metal oxide silicon) based technologies are increasingly approaching their limits. In particular, for the area of machine learning, energy consumption of today's electronics is an important limitation, that also contributes toward the ever-increasing impact of digitalization on our climate. Thus, in order to better meet the special requirements of unconventional computing, new physical substrates for bio-inspired computing schemes are extensively exploited. The aim of this Guest Edited Collection is to provide a platform for interdisciplinary research along three main lines: memristive materials and devices, emulation of cellular learning (neurons and synapses), and unconventional computing and network schemes. |
url |
https://doi.org/10.1038/s41598-020-68834-1 |
work_keys_str_mv |
AT martinziegler novelhardwareandconceptsforunconventionalcomputing |
_version_ |
1721296198191546368 |