Photoacoustic-based oxygen saturation assessment of murine femoral bone marrow in a preclinical model of leukemia

A variety of hematological diseases manifest in the bone marrow (BM), broadly characterized as BM failure (BMF). BMF can be caused by acute lymphoblastic leukemia (ALL), which results in an expansion of hypoxic regions in the BM. Because of this hypoxic presentation, there is potential for improved...

Full description

Bibliographic Details
Main Authors: Cayla Wood, Karine Harutyunyan, Diego R.T. Sampaio, Marina Konopleva, Richard Bouchard
Format: Article
Language:English
Published: Elsevier 2019-06-01
Series:Photoacoustics
Online Access:http://www.sciencedirect.com/science/article/pii/S2213597918300521
Description
Summary:A variety of hematological diseases manifest in the bone marrow (BM), broadly characterized as BM failure (BMF). BMF can be caused by acute lymphoblastic leukemia (ALL), which results in an expansion of hypoxic regions in the BM. Because of this hypoxic presentation, there is potential for improved characterization of BMF through in vivo assessment of oxygenation in the BM cavity. Photoacoustic (PA) imaging can provide local assessment of intravascular oxygen saturation (SO2), which has been shown to correlate with pimonidazole-assessed hypoxia. This study introduces an optimized PA imaging technique to assess SO2 within the femoral BM cavity through disease progression in a murine model of ALL. Results show a statistically significant difference with temporal changes in SO2 (from baseline) between control and diseased cohorts, demonstrating the potential of PA imaging for noninvasive, label-free monitoring of BMF diseases. Keywords: Photoacoustic imaging, Acute lymphoblastic leukemia, SO2 estimation, Bone marrow, Preclinical imaging
ISSN:2213-5979