Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.
BACKGROUND: Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However,...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2011-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3205050?pdf=render |
id |
doaj-11e87275d02b4567a88f416167169a7f |
---|---|
record_format |
Article |
spelling |
doaj-11e87275d02b4567a88f416167169a7f2020-11-25T00:12:14ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-01610e2712310.1371/journal.pone.0027123Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.Dan HuangYan WangLin WangFengxiao ZhangShan DengRui WangYun ZhangKai HuangBACKGROUND: Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB) or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetami (PJ34), or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosy)lation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosy)lation enhanced Smad-Smad binding element (SBE) complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.http://europepmc.org/articles/PMC3205050?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dan Huang Yan Wang Lin Wang Fengxiao Zhang Shan Deng Rui Wang Yun Zhang Kai Huang |
spellingShingle |
Dan Huang Yan Wang Lin Wang Fengxiao Zhang Shan Deng Rui Wang Yun Zhang Kai Huang Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. PLoS ONE |
author_facet |
Dan Huang Yan Wang Lin Wang Fengxiao Zhang Shan Deng Rui Wang Yun Zhang Kai Huang |
author_sort |
Dan Huang |
title |
Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. |
title_short |
Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. |
title_full |
Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. |
title_fullStr |
Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. |
title_full_unstemmed |
Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. |
title_sort |
poly(adp-ribose) polymerase 1 is indispensable for transforming growth factor-β induced smad3 activation in vascular smooth muscle cell. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2011-01-01 |
description |
BACKGROUND: Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB) or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetami (PJ34), or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosy)lation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosy)lation enhanced Smad-Smad binding element (SBE) complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway. |
url |
http://europepmc.org/articles/PMC3205050?pdf=render |
work_keys_str_mv |
AT danhuang polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell AT yanwang polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell AT linwang polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell AT fengxiaozhang polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell AT shandeng polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell AT ruiwang polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell AT yunzhang polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell AT kaihuang polyadpribosepolymerase1isindispensablefortransforminggrowthfactorbinducedsmad3activationinvascularsmoothmusclecell |
_version_ |
1725400268868157440 |