Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from t...

Full description

Bibliographic Details
Main Author: Minato Futoshi
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/201612210001
Description
Summary:Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA) and the Hauser-Feshbach statistical model (HFSM). In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
ISSN:2100-014X