ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS

Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {...

Full description

Bibliographic Details
Main Authors: Neda Ahanjideh, Hajar Mousavi
Format: Article
Language:English
Published: Shahrood University of Technology 2015-02-01
Series:Journal of Algebraic Systems
Subjects:
Online Access:http://jas.shahroodut.ac.ir/article_372_7f1845805d519f0e1594759c85b7ed9d.pdf
id doaj-11c33723a5a3461c8f9532f28dc37014
record_format Article
spelling doaj-11c33723a5a3461c8f9532f28dc370142020-11-25T03:37:03ZengShahrood University of TechnologyJournal of Algebraic Systems2345-51282345-511X2015-02-012214715110.22044/jas.2015.372372ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHSNeda Ahanjideh0Hajar Mousavi1Shahrekord Univ.Shahrekord UniversityLet $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.http://jas.shahroodut.ac.ir/article_372_7f1845805d519f0e1594759c85b7ed9d.pdfnon-commuting graph$K_4$-free graph$K_{13}$-free graph
collection DOAJ
language English
format Article
sources DOAJ
author Neda Ahanjideh
Hajar Mousavi
spellingShingle Neda Ahanjideh
Hajar Mousavi
ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
Journal of Algebraic Systems
non-commuting graph
$K_4$-free graph
$K_{1
3}$-free graph
author_facet Neda Ahanjideh
Hajar Mousavi
author_sort Neda Ahanjideh
title ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
title_short ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
title_full ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
title_fullStr ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
title_full_unstemmed ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
title_sort on the groups with the particular non-commuting graphs
publisher Shahrood University of Technology
series Journal of Algebraic Systems
issn 2345-5128
2345-511X
publishDate 2015-02-01
description Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.
topic non-commuting graph
$K_4$-free graph
$K_{1
3}$-free graph
url http://jas.shahroodut.ac.ir/article_372_7f1845805d519f0e1594759c85b7ed9d.pdf
work_keys_str_mv AT nedaahanjideh onthegroupswiththeparticularnoncommutinggraphs
AT hajarmousavi onthegroupswiththeparticularnoncommutinggraphs
_version_ 1724547399465041920