Summary: | ABSTRACT Introduction: Propulsive force in swimming, represented through impulse, is related to performance. However, since the as different biomechanical parameters contribute to impulse generation, coaches have a difficult task when seeking for performance improvement. Objective: Identify the main components involved in impulse generation in the front crawl stroke. Methods: Fourteen swimmers underwent a 10-second all-out fully tethered swimming test. The following parameters were obtained from the force-time curve: minimum force, peak force, mean force, time to peak force, rate of force development and stroke duration. This stage was followed by a principal component analysis. Results: The principal component analysis showed that component 1, predominantly kinetic, was composed of peak force, mean force and rate of force development, and accounted for 49.25% of total impulse variation, while component 2, predominantly temporal, composed of minimum force, stroke duration, and time to peak force, represented 26.43%. Conclusion: Kinetic parameters (peak force, mean force, and rate of force development) are more closely associated with impulse augmentation and, hypothetically, with non-tethered swimming performance. Level of Evidence II; Diagnostic studies - Investigating a diagnostic test.
|