The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
<p>A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-06-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/4689/2021/amt-14-4689-2021.pdf |
id |
doaj-11ad1632d87b4f43a5c1c6b13df55374 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Dogniaux C. Crevoisier R. Armante V. Capelle T. Delahaye V. Cassé M. De Mazière N. M. Deutscher N. M. Deutscher D. G. Feist D. G. Feist D. G. Feist O. E. Garcia D. W. T. Griffith F. Hase L. T. Iraci R. Kivi I. Morino J. Notholt D. F. Pollard C. M. Roehl K. Shiomi K. Strong Y. Té V. A. Velazco T. Warneke |
spellingShingle |
M. Dogniaux C. Crevoisier R. Armante V. Capelle T. Delahaye V. Cassé M. De Mazière N. M. Deutscher N. M. Deutscher D. G. Feist D. G. Feist D. G. Feist O. E. Garcia D. W. T. Griffith F. Hase L. T. Iraci R. Kivi I. Morino J. Notholt D. F. Pollard C. M. Roehl K. Shiomi K. Strong Y. Té V. A. Velazco T. Warneke The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations Atmospheric Measurement Techniques |
author_facet |
M. Dogniaux C. Crevoisier R. Armante V. Capelle T. Delahaye V. Cassé M. De Mazière N. M. Deutscher N. M. Deutscher D. G. Feist D. G. Feist D. G. Feist O. E. Garcia D. W. T. Griffith F. Hase L. T. Iraci R. Kivi I. Morino J. Notholt D. F. Pollard C. M. Roehl K. Shiomi K. Strong Y. Té V. A. Velazco T. Warneke |
author_sort |
M. Dogniaux |
title |
The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations |
title_short |
The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations |
title_full |
The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations |
title_fullStr |
The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations |
title_full_unstemmed |
The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations |
title_sort |
adaptable 4a inversion (5ai): description and first <i>x</i><sub>co<sub>2</sub></sub> retrievals from orbiting carbon observatory-2 (oco-2) observations |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2021-06-01 |
description |
<p>A better understanding of greenhouse gas surface sources
and sinks is required in order to address the global challenge of climate
change. Space-borne remote estimations of greenhouse gas atmospheric
concentrations can offer the global coverage that is necessary to improve
the constraint on their fluxes, thus enabling a better monitoring of
anthropogenic emissions. In this work, we introduce the Adaptable 4A
Inversion (5AI) inverse scheme that aims to retrieve geophysical parameters
from any remote sensing observation. The algorithm is based on the Optimal
Estimation algorithm, relying on the Operational version of the Automatized
Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along
with the Gestion et Étude des Informations Spectroscopiques
Atmosphériques: Management and Study of Atmospheric Spectroscopic
Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied
to retrieve the column-averaged dry air mole fraction of carbon dioxide
(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5d1679270b5164d00e8c41cdb9d69dad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00003.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00003.png"/></svg:svg></span></span>) from a sample of measurements performed by the Orbiting
Carbon Observatory-2 (OCO-2) mission. Those have been selected as a
compromise between<span id="page4690"/> coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="78de0ae35d5858ad9c211be9b5f6c4ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00004.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00004.png"/></svg:svg></span></span> retrievals successfully capture the latitudinal variations of <span class="inline-formula">CO<sub>2</sub></span> and its seasonal
cycle and long-term increasing trend. Comparison with ground-based
observations from the Total Carbon Column Observing Network (TCCON) yields a bias of <span class="inline-formula">1.30±1.32</span> ppm (parts per million), which is comparable to the standard deviation of the Atmospheric <span class="inline-formula">CO<sub>2</sub></span> Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3 ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated–observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.</p> |
url |
https://amt.copernicus.org/articles/14/4689/2021/amt-14-4689-2021.pdf |
work_keys_str_mv |
AT mdogniaux theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT ccrevoisier theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT rarmante theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT vcapelle theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT tdelahaye theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT vcasse theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT mdemaziere theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT nmdeutscher theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT nmdeutscher theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dgfeist theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dgfeist theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dgfeist theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT oegarcia theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dwtgriffith theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT fhase theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT ltiraci theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT rkivi theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT imorino theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT jnotholt theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dfpollard theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT cmroehl theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT kshiomi theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT kstrong theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT yte theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT vavelazco theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT twarneke theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT mdogniaux adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT ccrevoisier adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT rarmante adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT vcapelle adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT tdelahaye adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT vcasse adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT mdemaziere adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT nmdeutscher adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT nmdeutscher adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dgfeist adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dgfeist adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dgfeist adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT oegarcia adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dwtgriffith adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT fhase adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT ltiraci adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT rkivi adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT imorino adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT jnotholt adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT dfpollard adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT cmroehl adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT kshiomi adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT kstrong adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT yte adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT vavelazco adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations AT twarneke adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations |
_version_ |
1721361507700178944 |
spelling |
doaj-11ad1632d87b4f43a5c1c6b13df553742021-06-24T06:14:12ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-06-01144689470610.5194/amt-14-4689-2021The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observationsM. Dogniaux0C. Crevoisier1R. Armante2V. Capelle3T. Delahaye4V. Cassé5M. De Mazière6N. M. Deutscher7N. M. Deutscher8D. G. Feist9D. G. Feist10D. G. Feist11O. E. Garcia12D. W. T. Griffith13F. Hase14L. T. Iraci15R. Kivi16I. Morino17J. Notholt18D. F. Pollard19C. M. Roehl20K. Shiomi21K. Strong22Y. Té23V. A. Velazco24T. Warneke25Laboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceRoyal Belgian Institute for Space Aeronomy, Brussels, BelgiumCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, AustraliaUniversity of Bremen, Bremen, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyLehrstuhl für Physik der Atmosphäre, Ludwig-Maximilians-Universität München, Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyIzaña Atmospheric Research Center (IARC), State Meteorological Agency of Spain (AEMET), Tenerife, SpainCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, AustraliaInstitute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, GermanyNASA Ames Research Center, Moffett Field, CA, USAFinnish Meteorological Institute, Sodankylä, FinlandNational Institute for Environmental Studies (NIES), Tsukuba, JapanUniversity of Bremen, Bremen, GermanyNational Institute of Water and Atmospheric Research Ltd (NIWA), Lauder, New ZealandDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USAJapan Aerospace Exploration Agency (JAXA), Tsukuba, JapanDepartment of Physics, University of Toronto, Toronto, CanadaLaboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, FranceCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, AustraliaUniversity of Bremen, Bremen, Germany<p>A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on their fluxes, thus enabling a better monitoring of anthropogenic emissions. In this work, we introduce the Adaptable 4A Inversion (5AI) inverse scheme that aims to retrieve geophysical parameters from any remote sensing observation. The algorithm is based on the Optimal Estimation algorithm, relying on the Operational version of the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along with the Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied to retrieve the column-averaged dry air mole fraction of carbon dioxide (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5d1679270b5164d00e8c41cdb9d69dad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00003.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00003.png"/></svg:svg></span></span>) from a sample of measurements performed by the Orbiting Carbon Observatory-2 (OCO-2) mission. Those have been selected as a compromise between<span id="page4690"/> coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="78de0ae35d5858ad9c211be9b5f6c4ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00004.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00004.png"/></svg:svg></span></span> retrievals successfully capture the latitudinal variations of <span class="inline-formula">CO<sub>2</sub></span> and its seasonal cycle and long-term increasing trend. Comparison with ground-based observations from the Total Carbon Column Observing Network (TCCON) yields a bias of <span class="inline-formula">1.30±1.32</span> ppm (parts per million), which is comparable to the standard deviation of the Atmospheric <span class="inline-formula">CO<sub>2</sub></span> Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3 ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated–observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.</p>https://amt.copernicus.org/articles/14/4689/2021/amt-14-4689-2021.pdf |