The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations

<p>A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on...

Full description

Bibliographic Details
Main Authors: M. Dogniaux, C. Crevoisier, R. Armante, V. Capelle, T. Delahaye, V. Cassé, M. De Mazière, N. M. Deutscher, D. G. Feist, O. E. Garcia, D. W. T. Griffith, F. Hase, L. T. Iraci, R. Kivi, I. Morino, J. Notholt, D. F. Pollard, C. M. Roehl, K. Shiomi, K. Strong, Y. Té, V. A. Velazco, T. Warneke
Format: Article
Language:English
Published: Copernicus Publications 2021-06-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/4689/2021/amt-14-4689-2021.pdf
id doaj-11ad1632d87b4f43a5c1c6b13df55374
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. Dogniaux
C. Crevoisier
R. Armante
V. Capelle
T. Delahaye
V. Cassé
M. De Mazière
N. M. Deutscher
N. M. Deutscher
D. G. Feist
D. G. Feist
D. G. Feist
O. E. Garcia
D. W. T. Griffith
F. Hase
L. T. Iraci
R. Kivi
I. Morino
J. Notholt
D. F. Pollard
C. M. Roehl
K. Shiomi
K. Strong
Y. Té
V. A. Velazco
T. Warneke
spellingShingle M. Dogniaux
C. Crevoisier
R. Armante
V. Capelle
T. Delahaye
V. Cassé
M. De Mazière
N. M. Deutscher
N. M. Deutscher
D. G. Feist
D. G. Feist
D. G. Feist
O. E. Garcia
D. W. T. Griffith
F. Hase
L. T. Iraci
R. Kivi
I. Morino
J. Notholt
D. F. Pollard
C. M. Roehl
K. Shiomi
K. Strong
Y. Té
V. A. Velazco
T. Warneke
The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
Atmospheric Measurement Techniques
author_facet M. Dogniaux
C. Crevoisier
R. Armante
V. Capelle
T. Delahaye
V. Cassé
M. De Mazière
N. M. Deutscher
N. M. Deutscher
D. G. Feist
D. G. Feist
D. G. Feist
O. E. Garcia
D. W. T. Griffith
F. Hase
L. T. Iraci
R. Kivi
I. Morino
J. Notholt
D. F. Pollard
C. M. Roehl
K. Shiomi
K. Strong
Y. Té
V. A. Velazco
T. Warneke
author_sort M. Dogniaux
title The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
title_short The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
title_full The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
title_fullStr The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
title_full_unstemmed The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations
title_sort adaptable 4a inversion (5ai): description and first <i>x</i><sub>co<sub>2</sub></sub> retrievals from orbiting carbon observatory-2 (oco-2) observations
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2021-06-01
description <p>A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on their fluxes, thus enabling a better monitoring of anthropogenic emissions. In this work, we introduce the Adaptable 4A Inversion (5AI) inverse scheme that aims to retrieve geophysical parameters from any remote sensing observation. The algorithm is based on the Optimal Estimation algorithm, relying on the Operational version of the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along with the Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied to retrieve the column-averaged dry air mole fraction of carbon dioxide (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5d1679270b5164d00e8c41cdb9d69dad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00003.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00003.png"/></svg:svg></span></span>) from a sample of measurements performed by the Orbiting Carbon Observatory-2 (OCO-2) mission. Those have been selected as a compromise between<span id="page4690"/> coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="78de0ae35d5858ad9c211be9b5f6c4ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00004.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00004.png"/></svg:svg></span></span> retrievals successfully capture the latitudinal variations of <span class="inline-formula">CO<sub>2</sub></span> and its seasonal cycle and long-term increasing trend. Comparison with ground-based observations from the Total Carbon Column Observing Network (TCCON) yields a bias of <span class="inline-formula">1.30±1.32</span> ppm (parts per million), which is comparable to the standard deviation of the Atmospheric <span class="inline-formula">CO<sub>2</sub></span> Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3 ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated–observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.</p>
url https://amt.copernicus.org/articles/14/4689/2021/amt-14-4689-2021.pdf
work_keys_str_mv AT mdogniaux theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT ccrevoisier theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT rarmante theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT vcapelle theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT tdelahaye theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT vcasse theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT mdemaziere theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT nmdeutscher theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT nmdeutscher theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dgfeist theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dgfeist theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dgfeist theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT oegarcia theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dwtgriffith theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT fhase theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT ltiraci theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT rkivi theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT imorino theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT jnotholt theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dfpollard theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT cmroehl theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT kshiomi theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT kstrong theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT yte theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT vavelazco theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT twarneke theadaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT mdogniaux adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT ccrevoisier adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT rarmante adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT vcapelle adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT tdelahaye adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT vcasse adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT mdemaziere adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT nmdeutscher adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT nmdeutscher adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dgfeist adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dgfeist adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dgfeist adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT oegarcia adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dwtgriffith adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT fhase adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT ltiraci adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT rkivi adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT imorino adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT jnotholt adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT dfpollard adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT cmroehl adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT kshiomi adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT kstrong adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT yte adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT vavelazco adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
AT twarneke adaptable4ainversion5aidescriptionandfirstixisubcosub2subsubretrievalsfromorbitingcarbonobservatory2oco2observations
_version_ 1721361507700178944
spelling doaj-11ad1632d87b4f43a5c1c6b13df553742021-06-24T06:14:12ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-06-01144689470610.5194/amt-14-4689-2021The Adaptable 4A Inversion (5AI): description and first <i>X</i><sub>CO<sub>2</sub></sub> retrievals from Orbiting Carbon Observatory-2 (OCO-2) observationsM. Dogniaux0C. Crevoisier1R. Armante2V. Capelle3T. Delahaye4V. Cassé5M. De Mazière6N. M. Deutscher7N. M. Deutscher8D. G. Feist9D. G. Feist10D. G. Feist11O. E. Garcia12D. W. T. Griffith13F. Hase14L. T. Iraci15R. Kivi16I. Morino17J. Notholt18D. F. Pollard19C. M. Roehl20K. Shiomi21K. Strong22Y. Té23V. A. Velazco24T. Warneke25Laboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceLaboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Institut Polytechnique de Paris, Sorbonne Université, École Normale Supérieure, PSL Research University, 91120 Palaiseau, FranceRoyal Belgian Institute for Space Aeronomy, Brussels, BelgiumCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, AustraliaUniversity of Bremen, Bremen, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyLehrstuhl für Physik der Atmosphäre, Ludwig-Maximilians-Universität München, Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyIzaña Atmospheric Research Center (IARC), State Meteorological Agency of Spain (AEMET), Tenerife, SpainCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, AustraliaInstitute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, GermanyNASA Ames Research Center, Moffett Field, CA, USAFinnish Meteorological Institute, Sodankylä, FinlandNational Institute for Environmental Studies (NIES), Tsukuba, JapanUniversity of Bremen, Bremen, GermanyNational Institute of Water and Atmospheric Research Ltd (NIWA), Lauder, New ZealandDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USAJapan Aerospace Exploration Agency (JAXA), Tsukuba, JapanDepartment of Physics, University of Toronto, Toronto, CanadaLaboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, FranceCentre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, AustraliaUniversity of Bremen, Bremen, Germany<p>A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on their fluxes, thus enabling a better monitoring of anthropogenic emissions. In this work, we introduce the Adaptable 4A Inversion (5AI) inverse scheme that aims to retrieve geophysical parameters from any remote sensing observation. The algorithm is based on the Optimal Estimation algorithm, relying on the Operational version of the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along with the Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied to retrieve the column-averaged dry air mole fraction of carbon dioxide (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5d1679270b5164d00e8c41cdb9d69dad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00003.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00003.png"/></svg:svg></span></span>) from a sample of measurements performed by the Orbiting Carbon Observatory-2 (OCO-2) mission. Those have been selected as a compromise between<span id="page4690"/> coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>X</mi><mrow class="chem"><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="78de0ae35d5858ad9c211be9b5f6c4ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-4689-2021-ie00004.svg" width="25pt" height="14pt" src="amt-14-4689-2021-ie00004.png"/></svg:svg></span></span> retrievals successfully capture the latitudinal variations of <span class="inline-formula">CO<sub>2</sub></span> and its seasonal cycle and long-term increasing trend. Comparison with ground-based observations from the Total Carbon Column Observing Network (TCCON) yields a bias of <span class="inline-formula">1.30±1.32</span> ppm (parts per million), which is comparable to the standard deviation of the Atmospheric <span class="inline-formula">CO<sub>2</sub></span> Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3 ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated–observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.</p>https://amt.copernicus.org/articles/14/4689/2021/amt-14-4689-2021.pdf