A new social gene in <it>Dictyostelium discoideum</it>, <it>chtB</it>

<p>Abstract</p> <p>Background</p> <p>Competitive social interactions are ubiquitous in nature, but their genetic basis is difficult to determine. Much can be learned from single gene knockouts in a eukaryote microbe. The mutants can be competed with the parent to discer...

Full description

Bibliographic Details
Main Authors: Santorelli Lorenzo A, Kuspa Adam, Shaulsky Gad, Queller David C, Strassmann Joan E
Format: Article
Language:English
Published: BMC 2013-01-01
Series:BMC Evolutionary Biology
Subjects:
Online Access:http://www.biomedcentral.com/1471-2148/13/4
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Competitive social interactions are ubiquitous in nature, but their genetic basis is difficult to determine. Much can be learned from single gene knockouts in a eukaryote microbe. The mutants can be competed with the parent to discern the social impact of that specific gene. <it>Dictyostelium discoideum</it> is a social amoeba that exhibits cooperative behavior in the construction of a multicellular fruiting body. It is a good model organism to study the genetic basis of cooperation since it has a sequenced genome and it is amenable to genetic manipulation. When two strains of <it>D</it>. <it>discoideum</it> are mixed, a cheater strain can exploit its social partner by differentiating more spore than its fair share relative to stalk cells. Cheater strains can be generated in the lab or found in the wild and genetic analyses have shown that cheating behavior can be achieved through many pathways.</p> <p>Results</p> <p>We have characterized the knockout mutant <it>chtB</it>, which was isolated from a screen for cheater mutants that were also able to form normal fruiting bodies on their own. When mixed in equal proportions with parental strain cells, <it>chtB</it> mutants contributed almost 60% of the total number of spores. To do so, <it>chtB</it> cells inhibit wild type cells from becoming spores, as indicated by counts and by the wild type cells’ reduced expression of the prespore gene, <it>cotB</it>. We found no obvious fitness costs (morphology, doubling time in liquid medium, spore production, and germination efficiency) associated with the cheating ability of the <it>chtB</it> knockout.</p> <p>Conclusions</p> <p>In this study we describe a new gene in <it>D</it>. <it>discoideum</it>, <it>chtB</it>, which when knocked out inhibits the parental strain from producing spores. Moreover, under lab conditions, we did not detect any fitness costs associated with this behavior.</p>
ISSN:1471-2148