Epi-mild normality

A space (X, τ) is called epi-mildly normal if there exists a coarser topology τ′ on X such that (X, τ′) is Hausdorff (T2) mildly normal. We investigate this property and present some examples to illustrate the relationships between epi-mild normality and other weaker kinds of normality.

Bibliographic Details
Main Authors: Kalantan Lutfi, Alshammari Ibtesam
Format: Article
Language:English
Published: De Gruyter 2018-10-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2018-0099
id doaj-119b6dd83bc748df96a2a511b1866009
record_format Article
spelling doaj-119b6dd83bc748df96a2a511b18660092021-09-06T19:20:10ZengDe GruyterOpen Mathematics2391-54552018-10-011611170117510.1515/math-2018-0099math-2018-0099Epi-mild normalityKalantan Lutfi0Alshammari Ibtesam1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi ArabiaDepartment of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi ArabiaA space (X, τ) is called epi-mildly normal if there exists a coarser topology τ′ on X such that (X, τ′) is Hausdorff (T2) mildly normal. We investigate this property and present some examples to illustrate the relationships between epi-mild normality and other weaker kinds of normality.https://doi.org/10.1515/math-2018-0099normalclosed domainmildly normalepi-mildly normalsubmetrizable54a1054d15
collection DOAJ
language English
format Article
sources DOAJ
author Kalantan Lutfi
Alshammari Ibtesam
spellingShingle Kalantan Lutfi
Alshammari Ibtesam
Epi-mild normality
Open Mathematics
normal
closed domain
mildly normal
epi-mildly normal
submetrizable
54a10
54d15
author_facet Kalantan Lutfi
Alshammari Ibtesam
author_sort Kalantan Lutfi
title Epi-mild normality
title_short Epi-mild normality
title_full Epi-mild normality
title_fullStr Epi-mild normality
title_full_unstemmed Epi-mild normality
title_sort epi-mild normality
publisher De Gruyter
series Open Mathematics
issn 2391-5455
publishDate 2018-10-01
description A space (X, τ) is called epi-mildly normal if there exists a coarser topology τ′ on X such that (X, τ′) is Hausdorff (T2) mildly normal. We investigate this property and present some examples to illustrate the relationships between epi-mild normality and other weaker kinds of normality.
topic normal
closed domain
mildly normal
epi-mildly normal
submetrizable
54a10
54d15
url https://doi.org/10.1515/math-2018-0099
work_keys_str_mv AT kalantanlutfi epimildnormality
AT alshammariibtesam epimildnormality
_version_ 1717777137998495744